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Revision Notes

This revision replaces TIFF Revision 5.0.

Portions in italics are new or substantially changed in this revision.

Draft 1 Notes

This is the first draft of TIFF 6.0. There will likely be at least one more draft before the

final version, which we hope to release in April, 1992.

Reviewers are encouraged to look for technical glitches and unclear wording. It is

unlikely that significant technical changes will be made before final release of the TIFF

6.0 specification, since the major changes have all been thoroughly debated and voted on

in the TIFF Advisory Committee. So it will very likely not be a good use of your time to

send comments on things like the relative merits of JPEG vs other compression scheme,

or the relative merits of YCbCr vs other color spaces.

If you do wish to comment on the TIFF 6.0 draft, you can send your comment to the

Aldus Developers Desk via one of the following methods:

Internet: tiff-input@aldus.com

Fax: (206) 343-4240

(Please do not use the Internet address for general TIFF questions. They will just be

ignored.)

It is likely that the document will be redesigned before final release.

Major New Features

Major enhancements to TIFF 6.0, described in Part 2:

• CMYK image definition

• A revised RGB Colorimetry section.

• YCbCr image definition

• Tiled image definition

• JPEG compression

Clarifications

The LZW compression section was clarified with respect to when to switch the coding bit

depth.

The interaction between Compression=2 and PhotometricInterpretation was clarified.

Organizational Changes

• Appendices have been transformed into numbered Sections, to make the organization

more consistent and expandable.
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• The document was divided into two parts—Baseline and Extensions—to help the

developer make better and more consistent implementation choices.

• An index and table of contents were added, to aid in navigation.

Changes in Requirements

• Appendix G, the TIFF Classes appendix, has been integrated into the main body of

the specification, to expose developers to what a Baseline TIFF file actually looks like

earlier in the document. As part of this integration, the TIFF Classes terminology has

been replaced by the more monolithic Baseline TIFF terminology. The intent is to

further encourage all mainstream TIFF readers to support the Baseline TIFF require-

ments, which currently includes bi-level, grayscale, RGB, and palette color images.

• Due to current licensing restrictions, LZW compression support was moved out of the

Baseline TIFF section and into the Extensions section.

• Baseline TIFF requirements for palette color images were weakened a bit, in terms of

which bit depths are required.

Compatibility

As always, every attempt has been made to add functionality in such a way as to mini-

mize incompatibility problems with respect to files and software that were based on

earlier versions of the TIFF specification. The goal is that TIFF files should never

become obsolete, and TIFF software should not have to be revised more frequently than

absolutely necessary. In particular, Baseline TIFF 6.0 files will generally be readable

even by older applications that assume TIFF 5.0 or an earlier version of the specification.

However, TIFF 6.0 files that use one of the major new extensions, such as a new com-

pression scheme or color space, will not be successfully read by older software. Such

applications will have to give up in in a case like this, but they will be able to do so

gracefully and with a reasonably informative message back to the user, if they have been

following the rules.
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Part 1: Baseline TIFF

The TIFF specification is divided into two parts.

This part, Part 1, describes Baseline TIFF. Baseline TIFF is what we consider to be the

core of TIFF, the essentials that all mainstream TIFF developers should support in their

products.
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Section 1: Introduction

This document describes TIFF, a tag based file format for storing and interchanging

raster images.

History

The first version of the TIFF specification was published by the Aldus Corporation in the

fall of 1986. Revision 4.0 was released in April, 1987. Revision 5.0 was released in

October, 1998.

Scope

TIFF describes image data that, at least in the publishing industry, typically comes from

scanners, frame grabbers, and paint and photo retouch programs.

TIFF is not a printer language or page description language. TIFF merely describes and

stores a scanned image. The primary design goal was to provide a rich environment

within which the exchange of image data between application programs can be accom-

plished. This richness is required in order to take advantage of the varying capabilities of

scanners and other imaging devices. Though TIFF is a rich format, it can easily be used

for simple scanners and applications as well, since the number of required fields is quite

short.

TIFF will be enhanced on a continuing basis as new imaging needs arise. A high priority

has been given to structuring the data in such a way as to minimize the pain of future

additions.

Features

TIFF is capable of describing bi-level, grayscale, palette color, and full color image data

in several color spaces.

TIFF includes a number of compression schemes, to allow developers to choose the best

space/time tradeoff for their applications.

TIFF is not tied to specific scanners, printers, or computer display hardware.

TIFF is portable. It does not depend on particular operating systems, file systems,

compilers, or processors.

TIFF was designed to be extensible—to evolve gracefully.

TIFF allows private tags to be defined that are specific to a particular application or

organization.
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Section 2: Notation

Decimal and Hexadecimal

All numeric values in this document are expressed in decimal unless suffixed by “.H” to

denote a hexadecimal value.

Compliance

“Is, shall” indicate mandatory requirements. All compliant writers or readers must meet

the specification.

“Should” indicates a recommendation.

“May” indicates an option.

Features designated ‘not recommended for general data interchange’ shall be considered

extensions to TIFF 6.0 proper. Files which use such features shall be designated “Ex-

tended TIFF 6.0” files, and the particular extensions used should be documented. A

Baseline TIFF 6.0 reader is not required to support any extensions.
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Section 3: TIFF Structure

A TIFF file is a sequence of 8-bit bytes, where the bytes are numbered from 0 to N. The

largest possible TIFF file is 2**32 bytes in length.

A TIFF file begins with an 8-byte “image file header” that points to an “image file

directory (IFD).” An image file directory contains information about the image, as well

as pointers into the actual image data.

We will now describe these structures in more detail.

See Figure 1.

Image file header

A TIFF file begins with an 8-byte image file header, containing the following informa-

tion:

Bytes 0-1: The first word of the file specifies the byte order used within the file.

Legal values are:

“II” (4949.H)

“MM” (4D4D.H)

In the “II” format, byte order is always from least significant to most

significant, for both 16-bit and 32-bit integers This is often called little-

endian byte order. In the “MM” format, byte order is always from most

significant to least significant, for both 16-bit and 32-bit integers. This

is often called big-endian byte order.

In both formats, character strings are stored into sequential byte

locations, and are null terminated.

All TIFF readers should support both byte orders.

Bytes 2-3 The second word of the file is the TIFF “version number.” This

number, 42 (2A.H), should not be confused with the current Revision

of the TIFF specification.

The TIFF version number (42) has never changed, and probably

never will. If it ever does, it means that TIFF has changed in some

way so radical that a TIFF reader should give up immediately. The

number 42 was chosen for its deep philosophical significance. It can

and should be used as additional verification that this is indeed a

TIFF file.

A TIFF file does not contain a real version/revision number. There is

no “TIFF X.0” tag. This was a conscious design decision. In many

file formats, fields take on different meanings depending on a single

version number. The problem is that as the file format “ages,” it

becomes increasingly difficult to document which fields mean what

in a given version, and older software usually has to give up if it

encounters a file with a newer version number. We wanted TIFF
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fields to have a permanent and well-defined meaning, so that “older”

software can usually read “newer” TIFF files. This seems to result in

lower software maintenance costs and more reliable software.

Bytes 4-7 This long word contains the offset (in bytes) of the first Image File

Directory. The directory may be at any location in the file after the

header but must begin on a word boundary. In particular, an Image File

Directory may follow the image data it describes. Readers must simply

follow the pointers, wherever they may lead.

(The term “byte offset” is always used in this document to refer to a

location with respect to the beginning of the file. The first byte of the

file has an offset of 0.)

Image file directory

An Image File Directory (IFD) consists of a 2-byte count of the number of entries (i.e.,

the number of fields), followed by a sequence of 12-byte field entries, followed by a 4-

byte offset of the next Image File Directory (or 0 if none). (Do not forget to write the 4

bytes of 0 after the last IFD!)

Each 12-byte IFD entry has the following format:

Bytes 0-1 contain the Tag that identifies the field.

Bytes 2-3 contain the field Type.

Bytes 4-7 contain the Length of the field. Length (Count) is the number of values

of the indicated Type.

Bytes 8-11 contain the Value Offset, the file offset (in bytes) of the Value for the

field. The Value is expected to begin on a word boundary; the corre-

sponding Value Offset will thus be an even number. This file offset

may point to anywhere in the file, including after the image data.

Terminology: a TIFF field is a logical entity consisting of TIFF tag and its value. This

logical concept happens to be implemented as an IFD Entry, plus the actual value if it

doesn’t fit into the last 4 bytes of the IFD Entry. We will often use the terms TIFF field

and IFD entry interchangeably.

The entries in an IFD must be sorted in ascending order by Tag. Note that this is not the

order in which the fields are described in this document. The Values to which directory

entries point need not be in any particular order in the file.

In order to save time and space, the Value Offset is interpreted to contain the Value

instead of pointing to the Value if the Value fits into 4 bytes. If the Value is less than 4

bytes, it is left-justified within the 4-byte Value Offset, i.e., stored in the lower-numbered

bytes. Whether or not the Value fits within 4 bytes is determined by looking at the Type

and Length of the field.

Note that the Length (Count) is specified in terms of the field type, not the total number

of bytes. A single 16-bit word (SHORT) has a Length of 1, not 2, for example.

The field types and their sizes are described below:

1 = BYTE An 8-bit unsigned integer.
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2 = ASCII An 8-bit byte that contains a 7-bit ASCII code; the last byte

must be null.

3 = SHORT A 16-bit (2-byte) unsigned integer.

4 = LONG A 32-bit (4-byte) unsigned integer.

5 = RATIONAL Two LONG’s:  the first represents the numerator of a fraction,

the second the denominator.

The value of the Length part of an ASCII field entry includes the null. If padding is

necessary, the Length does not include the pad byte. Note that there is no “count byte,” as

there is in Pascal-type strings. The Length part of the field takes care of that. The null is

not strictly necessary, but may make things slightly simpler for C programmers.

The reader should check the type to ensure that it is what he expects. TIFF currently

allows more than 1 valid type for some fields. For example, ImageWidth and

ImageLength were specified as having type SHORT. Very large images with more than

64K rows or columns are possible with some devices even now. Rather than add parallel

LONG tags for these fields, it is cleaner to allow both SHORT and LONG for

ImageColumns and similar fields.

In fact, all modern TIFF readers should be modified if necessary to accept BYTE,

SHORT, or LONG values for any unsigned integer field. This allows a single procedure

to retrieve any integer value, makes reading more robust, and saves disk space in some

situations.

In TIFF 6.0, some additional field types have been defined. TIFF writers are cautioned to

avoid using these new field types for at least a year or so following the release of the

TIFF 6.0 specification, if at all possible. Even then, most readers will at best ignore fields

that use one of the new data types. Before that time, they may well refuse to import files

containing one of the new field types, even if the tag is private.

None of the new field types is actually used by a TIFF 6.0 tag. So over the short term, the

new field types will be found only in some private tags.

The new field types are:

6 = SBYTE An 8-bit signed integer.

7 = UNDEFINED An 8-bit byte that can contain anything at all, depending on

the definition of the tag.

8 = SSHORT A 16-bit (2-byte) signed integer.

9 = SLONG A 32-bit (4-byte) signed integer.

10 = SRATIONAL Two SLONG’s:  the first represents the numerator of a

fraction, the second the denominator.

11 = FLOAT Single precision (4-byte) IEEE format.

12 = DOUBLE Double precision (8-byte) IEEE format.

Warning: it is likely that other TIFF field types will be added in the future. Your reader

should skip over fields containing an unexpected field type!
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Fields are arrays

Please note that all TIFF fields have a Length (count) associated with them, which means

that all TIFF fields are really one-dimensional arrays, even though most TIFF fields

contain a single value.

For example, if you need to store some intricate data structure in a private field, you

should use the UNDEFINED field type and set the Length to the number of bytes re-

quired to contain the data structure.

Multiple images per TIFF file

Note that there may be more than one IFD. Each IFD is said to define a “subfile.” One

potential use of subsequent subfiles is to describe a related image, such as the next page

of a facsimile transmission. A Baseline TIFF reader is not required to read any IFDs

beyond the first one, however.

Extensions and Filetypes

The recommended MS-DOS, UNIX, and OS/2 file extension for TIFF files is “.TIF”. The

recommended Macintosh Filetype is “TIFF”.
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Section 4: Bi-level Images

Now that we have an idea of the overall TIFF structure, we can move on to filling the

structure with actual fields (tags and values) that describe raster image data.

To make all of this clearer, we will organize the discussion according to the four Baseline

TIFF image types: bi-level, grayscale, palette, and full color images.

A bi-level image contains two colors—black and white. Such data is often called “bi-

level” data, since it contains two signal levels.

Color

TIFF allows an application to write out bi-level data in either a white-is-zero or black-is-

zero format. The tag that records this information is called PhotometricInterpretation. It is

defined like this:

PhotometricInterpretation

Tag = 262  (106.H)

Type = SHORT

Values:

0 = WhiteIsZero. For bi-level and grayscale images:  0 is imaged as white.

2**BitsPerSample-1 is imaged as black. This is the normal value for Compres-

sion=2.

1 = BlackIsZero. For bi-level and grayscale images:  0 is imaged as black.

2**BitsPerSample-1 is imaged as white. If this value is specified for Compres-

sion=2, the image should display and print reversed.

Bit Depth

Of course, it only takes 1 bit to store a bi-level pixel value. In TIFF, this fact is recorded

in the BitsPerSample tag:

BitsPerSample

Tag = 258  (102.H)

Type = SHORT

For bi-level images, the value of this tag is 1.

Compression

The data can be stored either uncompressed or compressed. The tag that records this

information is the Compression tag:

Compression

Tag = 259  (103.H)

Type = SHORT

Values:

1 = No compression, but pack data into bytes as tightly as possible, with no unused bits

except at the end of a row. The component values are stored as an array of type
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BYTE. Each scan line (row) is padded to the next BYTE boundary.

2 = CCITT Group 3 1-Dimensional Modified Huffman run length encoding. See the

Modified Huffman Compression section.

32773 = PackBits compression, a simple byte oriented run length scheme. See the

PackBits section for details.

Data compression only applies to raster image data. All other TIFF fields are unaffected.

Baseline TIFF readers must handle all three compression schemes.

Pixel Size

An image in TIFF is organized as a rectangular array of pixels, containing M rows of N

columns each. These numbers are stored in the following fields:

ImageLength

Tag = 257  (101.H)

Type = SHORT or LONG

The number of rows (sometimes described as ‘scan lines’) in the image.

ImageWidth

Tag = 256  (100.H)

Type = SHORT or LONG

The number of columns in the image, i.e., the number of pixels per scan line.

Physical Size

We often also want to know the size of the picture that is represented by this image.

Instead of storing the total image size directly, we store the number of pixels per inch or

per centimeter, using the following three fields:

ResolutionUnit

Tag = 296 (128.H)

Type = SHORT

Values:

1 = No absolute unit of measurement. Used for images that may have a non-square aspect

ratio, but no meaningful absolute dimensions.

2 = Inch.

3 = Centimeter.

XResolution

Tag = 282  (11A.H)

Type = RATIONAL

The number of pixels per ResolutionUnit in the ImageColumns direction.

YResolution

Tag = 283  (11B.H)

Type = RATIONAL

The number of pixels per ResolutionUnit in the ImageLength direction.
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Location of the Data

Finally, we need to point to the actual compressed or uncompressed data. In TIFF, the

data can be stored almost anywhere in the file, to give a TIFF editor maximum flexibility

in where to put the data. TIFF also allows and encourages writers to break the image into

separate strips, for increased editing flexibility as well as more efficient buffering. The

location and size of each strip is stored in these three fields:

RowsPerStrip

Tag = 278  (116.H)

Type = SHORT or LONG

The number of rows in each strip (except possibly the last strip.)

For example, if ImageLength is 24, and RowsPerStrip is 10, then there are 3 strips, with

10 rows in the first strip, 10 rows in the second strip, and 4 rows in the third strip. (The

data in the last strip is not padded out with 6 extra rows of dummy data.)

StripOffsets

Tag = 273  (111.H)

Type = SHORT or LONG

For each strip, the byte offset of that strip. The offset is specified with respect to the

beginning of the TIFF file.

StripByteCounts

Tag = 279  (117.H)

Type = SHORT or LONG

For each strip, the number of bytes in that strip, after compression.

Putting it all together, and adding a couple of less-important fields that we will be

discussing later, we look at a sample bilevel image file:
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A Sample Bilevel TIFF File

Offset Value

(hex) Name (mostly hex)

Header:

0000 Byte Order 4D4D

0002 Version 002A

0004 1st IFD pointer 00000014

IFD:

0014 Entry Count 000D

0016 NewSubfileType 00FE 0004 00000001 00000000

0022 ImageWidth 0100 0004 00000001 000007D0

002E ImageLength 0101 0004 00000001 00000BB8

003A Compression 0103 0003 00000001 8005 0000

0046 PhotometricInterpretation 0106 0003 00000001 0001 0000

0052 StripOffsets 0111 0004 000000BC 000000B6

005E RowsPerStrip 0116 0004 00000001 00000010

006A StripByteCounts 0117 0003 000000BC 000003A6

0076 XResolution 011A 0005 00000001 00000696

0082 YResolution 011B 0005 00000001 0000069E

008E Software 0131 0002 0000000E 000006A6

009A DateTime 0132 0002 00000014 000006B6

00A6 Next IFD pointer 00000000

Fields pointed to by the tags:

00B6 StripOffsets Offset0, Offset1, ... Offset187

03A6 StripByteCounts Count0, Count1, ... Count187

0696 XResolution 0000012C 00000001

069E YResolution 0000012C 00000001

06A6 Software “PageMaker 3.0”

06B6 DateTime “1988:02:18 13:59:59”

Image Data:

00000700 Compressed data for strip 10

xxxxxxxx Compressed data for strip 179

xxxxxxxx Compressed data for strip 53

xxxxxxxx Compressed data for strip 160

.

.

End of example

Comments on the bilevel image example

1. The IFD in our example starts at position hex 14. It could have been anywhere in the file as long
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as the position is even and greater than or equal to 8, since the TIFF header is 8 bytes

long and must be the first thing in a TIFF file.

2. With 16 rows per strip, we have 188 strips in all.

3. The example uses a number of optional fields, such as DateTime. TIFF readers must

safely skip over these fields if they do not want to use the information. And Baseline

TIFF readers must not require that such fields be present.

4. To make a point, our example has highly fragmented image data; the strips of our

image are not even in sequential order. The point is that strip offsets must not be

ignored. Never assume that strip N+1 follows strip N on disk. Incidentally, there is no

requirement that the image data must follow the IFD information. As long as you

follow the pointers, whether they be IFD pointers, field pointers, or Strip Offsets, you

can’t go wrong.

Summary list of tags for bilevel images

Here is a list of required tags for bilevel images, in numerical order, which is how they

would appear in the IFD. (Note that the example above does not include some of these

tags. This is permitted, since the tags that were omitted each have a default, and the

default is appropriate for this file.)

TagName Decimal Hex Type Value

ImageWidth 256 100 SHORT or LONG

ImageLength 257 101 SHORT or LONG

BitsPerSample 258 102 SHORT 1

Compression 259 103 SHORT 1 or 2 or 32773

PhotometricInterpretation 262 106 SHORT 0 or 1

StripOffsets 273 111 SHORT or LONG

RowsPerStrip 278 116 SHORT or LONG

StripByteCounts 279 117 LONG or SHORT

XResolution 282 11A RATIONAL

YResolution 283 11B RATIONAL

ResolutionUnit 296 128 SHORT 1 or 2 or 3
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Section 5: Grayscale Images

Grayscale images are a generalization of bilevel images. Instead of just black and white,

grayscale images can store shades of gray. In order to describe such images, we need to

add or change the following tags. The other required tags are the same as for bilevel

images.

BitsPerSample = 4 or 8. This gives us either 16 or 256 distinct shades of gray.

Compression = 1 or 32773 (PackBits). In Baseline TIFF, we can store grayscale images

either as uncompressed or in PackBits form.

PhotometricInterpretation = 0 or 1. The image can either be stored WhiteIsZero or

BlackIsZero.

Summary list of tags for grayscale images

The list of required tags for grayscale images, in numerical order:

TagName Decimal Hex Type Value

ImageWidth 256 100 SHORT or LONG

ImageLength 257 101 SHORT or LONG

BitsPerSample 258 102 SHORT 4 or 8

Compression 259 103 SHORT 1 or 32773

PhotometricInterpretation 262 106 SHORT 0 or 1

StripOffsets 273 111 SHORT or LONG

RowsPerStrip 278 116 SHORT or LONG

StripByteCounts 279 117 LONG or SHORT

XResolution 282 11A RATIONAL

YResolution 283 11B RATIONAL

ResolutionUnit 296 128 SHORT 1 or 2 or 3
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Section 6: Palette Color Images

Palette color images are in a sense a generalization of grayscale images. They still have

one component per pixel, but the component value is used as an index into a full RGB

lookup table. In order to describe such images, we need to add or change the following

tags. The other required tags are the same as for grayscale images.

BitsPerSample = 1,2,4, or 8. Note that we can even have 1-bit palette color images.

Such images will have two colors, like bilevel images, but those colors need not be black

and white.

Compression = 1 or 32773 (PackBits).

PhotometricInterpretation = 3 (Palette Color).

ColorMap

Tag = 320 (140.H)

Type = SHORT

N = 3 * (2**BitsPerSample)

This tag defines a Red-Green-Blue color map for palette color images. The palette color

pixel value is used to index into all 3 subcurves. For example, a Palette color pixel having

a value of 0 would be displayed according to the 0th entry of the Red, Green, and Blue

subcurves.

The subcurves are stored sequentially. The Red entries come first, followed by the Green

entries, followed by the Blue entries. The length of each subcurve is 2**BitsPerSample.

A ColorMap entry for an 8-bit Palette color image would therefore have 3 * 256 entries.

The width of each entry is 16 bits, as implied by the type of SHORT. 0 represents the

minimum intensity, and 65535 represents the maximum intensity. Black is represented by

0,0,0, and white by 65535, 65535, 65535. The purpose of the color map is to act as a

“lookup” table mapping pixel values from 0 to 2**BitsPerSample-1 into RGB triplets.

No default. ColorMap must be included in all palette color images.

Summary list of tags for palette color images

The list of required tags for grayscale images, in numerical order:

TagName Decimal Hex Type Value

ImageWidth 256 100 SHORT or LONG

ImageLength 257 101 SHORT or LONG

BitsPerSample 258 102 SHORT 1, 2, 4 , or 8

Compression 259 103 SHORT 1 or 32773

PhotometricInterpretation 262 106 SHORT 3

StripOffsets 273 111 SHORT or LONG

RowsPerStrip 278 116 SHORT or LONG

StripByteCounts 279 117 LONG or SHORT

XResolution 282 11A RATIONAL

YResolution 283 11B RATIONAL

ResolutionUnit 296 128 SHORT 1 or 2 or 3

ColorMap 320 140 SHORT
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Section 7: RGB Full Color Images

RGB full color images are in a sense a generalization of palette color images. Like a

palette color image, a full color image describes a color picture. However, in the full

color case, each pixel is made up of three components—red, green, and blue—and is 24

bits deep. There is no ColorMap.

In order to describe such images, we need to add or change the following tags and values.

The other required tags are the same as for palette color images.

SamplesPerPixel

Tag = 277  (115.H)

Type = SHORT

The number of components per pixel. SamplesPerPixel is 1 for bilevel, grayscale, and

palette color images. SamplesPerPixel is 3 for RGB images.

Default = 1.

BitsPerSample = 8,8,8. Each component is 8 bits deep.

Compression = 1 or 32773 (PackBits).

PhotometricInterpretation = 2 (RGB).

Summary list of tags for palette color images

The list of required tags for grayscale images, in numerical order:

TagName Decimal Hex Type Value

ImageWidth 256 100 SHORT or LONG

ImageLength 257 101 SHORT or LONG

BitsPerSample 258 102 SHORT 8,8,8 (three values)

Compression 259 103 SHORT 1 or 32773

PhotometricInterpretation 262 106 SHORT 2

StripOffsets 273 111 SHORT or LONG

SamplesPerPixel 277 115 SHORT 3

RowsPerStrip 278 116 SHORT or LONG

StripByteCounts 279 117 LONG or SHORT

XResolution 282 11A RATIONAL

YResolution 283 11B RATIONAL

ResolutionUnit 296 128 SHORT 1 or 2 or 3
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Section 8: Baseline TIFF

Requirements

This section describes requirements that are common to all Baseline TIFF images.

General Requirements

The following are required characteristics of all Baseline TIFF files.

Where there are options, TIFF writers can do whichever one they want, but Baseline

TIFF readers must be able to handle all of them.

Defaults. TIFF writers may, but are not required, to write out a field that has a default

value, if the default value is the one desired. TIFF readers must be prepared to handle

either situation.

Other fields. TIFF readers must be prepared to encounter fields other than the required

fields in TIFF files. TIFF writers are allowed to write fields such as Make, Model,

DateTime, and so on, and TIFF readers can certainly make use of such fields if they exist.

TIFF readers must not, however, refuse to read the file if such optional fields do not exist.

‘MM’ and ‘II’ byte order. TIFF readers must be able to handle both byte orders. TIFF

writers can do whichever is most convenient or efficient. Images are interchanged

between unlike computers with a surprisingly high frequency.

Multiple subfiles. TIFF readers must be prepared for multiple images (i.e., subfiles) per

TIFF file, although they are not required to do anything with any image after the first one.

TIFF writers must be sure to write a long word of 0 after the last IFD (this is the manda-

tory way of signalling that this IFD was the last one), as was explained in the TIFF

structure discussion.

If a TIFF writer writes multiple subfiles, the first one must be the full resolution image.

Subsequent subimages, such as reduced resolution images, may be in any order in the

TIFF file. If a reader wants to make use of such subimages, it will have to scan the IFD’s

before deciding how to proceed.

TIFF Editors. Editors—applications that modify TIFF files—have a few additional

requirements.

TIFF editors must be especially careful about subfiles. If a TIFF editor edits a full-

resolution subfile, but does not update an accompanying reduced-resolution subfile, a

reader that uses the reduced-resolution subfile for screen display will display the wrong

thing. So TIFF editors must either create a new reduced-resolution subfile when they alter

a full-resolution subfile, or else they must simply delete any subfiles that they aren’t

prepared to deal with.

A similar situation arises with the fields themselves. A TIFF editor need only worry

about the TIFF required fields. In particular, it is unnecessary, and probably dangerous,

for an editor to copy fields that it does not understand, since the editor may have altered

the file in a way that is incompatible with the unknown fields.
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No Duplicate Pointers. Do not point to the same piece of information from more than

one place. TIFF readers and editors are under no obligation to detect this condition and

handle it properly, and most do not. This wouldn’t be a problem if TIFF files were read-

only entities, but they are not. This warning covers TIFF tag pointers as well as tags such

as StripOffsets and TileOffsets. The small space savings is not worth the trouble it causes.

And make sure that your strips point to real data. Do not use a stripoffset of 0 to mean

something special, for example. There are hundreds of TIFF readers out there, and they

will not know what you mean. Also, if you need to record some special information for

each strip, use a private tag.

Watch out for extra components. Some TIFF files may have more components per pixel

than you think. We strongly recommend that you skip over them gracefully, using the

value of the SamplesPerPixel tag. For example, it is possible that the data will have a

PhotometricInterpretation of RGB, but have 4 SamplesPerPixel. See the ExtraSamples

tag for further details.

Watch out for new field types. Be prepared to handle field types that you are not

expecting, such as floating point data. Make sure your reader skips over such fields

gracefully. Do not expect that BYTE, ASCII, SHORT, LONG, and RATIONAL will always

be a complete list of field types.

Notes on Required Fields

NewSubfileType. LONG. Recommended but not required.

ImageWidth. SHORT or LONG. (That is, both “SHORT” and “LONG” TIFF field types

are allowed, and must be handled properly by readers. TIFF writers can use either.) TIFF

readers are not required to read arbitrarily large files however. Some readers will give up

if the entire image cannot fit in available memory. (In such cases the reader should

inform the user of the nature of the problem.) Others will probably not be able to handle

ImageWidth greater than 65535. Recommendation: use LONG, since resolutions seem to

keep going up.

ImageLength. SHORT or LONG.

RowsPerStrip. SHORT or LONG. Readers must be able to handle any value between 1

and 2**32-1. However, some readers may try to read an entire strip into memory at one

time, so that if the entire image is one strip, the application may run out of memory.

Recommendation 1:  Set RowsPerStrip such that the size of each strip is about 8K bytes.

Do this even for uncompressed data, since it is easy for a writer and makes things simpler

for readers. (Note:  extremely wide, high-resolution images may have rows larger than

8K bytes; in this case, RowsPerStrip should be 1, and the strip will just have to be larger

than 8K.

StripOffsets. SHORT or LONG. As explained in the main part of the specification, the

number of StripOffsets depends on RowsPerStrip and ImageLength. (LONG must, of

course, be used if the file is more than 64K bytes in length.)

StripByteCounts. SHORT or LONG. As of TIFF 6.0, we will require StripByteCounts in

Baseline TIFF files.

XResolution, YResolution. RATIONAL. Note that the X and Y resolutions may be
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unequal. A TIFF reader must be able to handle this case. TIFF pixel-editors will typically

not care about the resolution, but applications such as page layout programs will.

ResolutionUnit. SHORT. TIFF readers must be prepared to handle all three values for

ResolutionUnit.
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Section 9: Comprehensive

Description of Baseline TIFF

Fields

This section describes the Baseline fields defined in this version of TIFF. More fields

may be added in future versions. Whenever possible they will be added in a way that

allows old TIFF reader software to read newer TIFF files.

The documentation for each field contains the name of the field (quite arbitrary, but

convenient), the numeric Tag value, the field Type, the required Number of Values (N),

comments describing the field, and the default, if any. Readers must assume the default

value if the field does not exist.

“No default” does not mean that a TIFF writer should not pay attention to the tag. It

simply means that there is no default. If the writer has reason to believe that readers will

care about the value of this field, the writer should write the field with the appropriate

value. TIFF readers can do whatever they want if they encounter a missing “no default”

field that they care about.

Many fields described in this part of the document are not required, or are only required

for particular types of TIFF files. See the preceding sections for lists of required fields.

Definitions

Before we begin defining the fields, we will define some basic concepts. An Baseline

TIFF image is defined to be a two-dimensional array of “pixels,” each of which consists

of one or more “components.” With monochromatic data, we have one component per

pixel, and “component” and “pixel” can be used interchangeably. RGB color data

contains three components per pixel.
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Architectural Fields

Basic fields are fields that are fundamental to the pixel architecture of an image and how

and where the data is stored in the file.

BitsPerSample

Tag = 258  (102.H)

Type = SHORT

N = SamplesPerPixel

Number of bits per component.

Note that this tag allows a different number of bits per component for each component

corresponding to a pixel. For example, RGB color data could use a different number of

bits per component for each of the three color planes. Most RGB files will have the

same number of BitsPerSample for each component. Even in this case, be sure to

include all three entries. Writing “8” when you mean “8,8,8” sets a bad precedent for

other fields.

Default = 1. See also SamplesPerPixel.

Compression

Tag = 259  (103.H)

Type = SHORT

N = 1

1 = No compression, but pack data into bytes as tightly as possible, with no unused bits

except at the end of a row. The component values are stored as an array of type

BYTE, for BitsPerSample <= 8, SHORT if BitsPerSample > 8 and <= 16, and

LONG if BitsPerSample > 16 and <= 32. Each scan line (row) is padded to the next

BYTE/SHORT/LONG boundary, depending on the bit depth rules specified in the

preceding sentence. The byte ordering of data >8 bits must be consistent with that

specified in the TIFF file header (bytes 0 and 1). “II” format files will therefore have

the least significant bytes preceding the most significant bytes while “MM” format

files will have the opposite order, in the SHORT and LONG cases.

If the number of bits per component is not a power of 2, and you are

willing to give up some space for better performance, you may wish

to use the next higher power of 2. For example, if your data can be

represented in 6 bits, you may wish to specify that it is 8 bits deep,

and then high-order-justify the 6 data bits in each byte.

Rows are required to begin on byte boundaries. (SHORT boundaries if

BitsPerSample is > 8, LONG boundaries if BitsPerSample is > 16). The number of

bytes per row is therefore (ImageWidth * SamplesPerPixel * BitsPerSample + 7) / 8,

assuming integer arithmetic, for PlanarConfiguration=1. (If BitsPerSample is > 8,

replace 7 and 8 with 15 and 16. If BitsPerSample is > 16, replace 7 and 8 with 31

and 32.) Replace “ImageWidth*SamplesPerPixel” with “ImageWidth” for

PlanarConfiguration=2.

Some graphics systems want rows to be word- or double-word-

aligned. Uncompressed TIFF rows will need to be copied into word-
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or double-word-padded row buffers before being passed to the

graphics routines in these environments.

2 = CCITT Group 3 1-Dimensional Modified Huffman run length encoding. See the

Modified Huffman compression section. BitsPerSample must be 1, since this type of

compression is defined only for bilevel images.

By convention, the normal PhotometricInterpretation for Compression=2 is 0

(WhiteIsZero). When you decompress data that has been compressed by Compres-

sion=2, you must translate white runs into 0’s and black runs into 1’s. If a reader

encounters a PhotometricInterpretation of 1 (BlackIsZero) for such an image, the

image should be displayed and printed with black and white reversed.

32773 = PackBits compression, a simple byte oriented run length scheme. See the

PackBits section for details.

Data compression only applies to raster image data, as pointed to by StripOffsets. All

other TIFF information is unaffected.

Default = 1.

ImageWidth

Tag = 256  (100.H)

Type = SHORT or LONG

N = 1

The number of columns in the image, i.e., the number of pixels per scan line. See also

ImageLength.

No default.

ImageLength

Tag = 257  (101.H)

Type = SHORT or LONG

N = 1

The number of rows (sometimes described as “scan lines”) in the image. See also

ImageWidth.

No default.

NewSubfileType

Tag = 254  (FE.H)

Type = LONG

N = 1

Replaces the old SubfileType field, due to limitations in the definition of that field.

A general indication of the kind of data that is contained in this subfile. This field is made

up of a set of 32 flag bits. Unused bits are expected to be 0. Bit 0 is the low-order bit.

Currently defined values are:

Bit 0 is 1 if the image is a reduced resolution version of another image in this

TIFF file; else the bit is 0.

Bit 1 is 1 if the image is a single page of a multi-page image (see the
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PageNumber tag description); else the bit is 0.

Bit 2 is 1 if the image defines a transparency mask for another image in this

TIFF file. The PhotometricInterpretation value must be 4, designating a

transparency mask.

These values have been defined as bit flags because they are independent of each other.

Default is 0.

PlanarConfiguration

Tag = 284  (11C.H)

Type = SHORT

N = 1

1 = Chunky format. The component values for each pixel are stored contiguously, so that

there is a single image plane. See PhotometricInterpretation to determine the order of

the components within the pixel data. So, for RGB data, the data is stored

RGBRGBRGB...and so on.

2 = Planar format. The components are stored in separate “component planes.”  The

values in StripOffsets and StripByteCounts are then arranged as a 2-dimensional

array, with SamplesPerPixel rows and StripsPerImage columns. (All of the

columns for row 0 are stored first, followed by the columns of row 1, and so on.)

PhotometricInterpretation describes the type of data that is stored in each

component plane. For example, RGB data is stored with the Red components in

one component plane, the Green in another, and the Blue in another.

Planar format is not currently in widespread use, and is not recommended for general

interchange. That is, its use should be considered an extension.

If SamplesPerPixel is 1, PlanarConfiguration is irrelevant, and should not be included.

If a row interleave effect is desired, a writer could write out the data as

PlanarConfiguration=2—separate sample planes—but break up the planes into multiple

strips (one row per strip, perhaps) and interleave the strips.

Default is 1. See also BitsPerSample, SamplesPerPixel.

RowsPerStrip

Tag = 278  (116.H)

Type = SHORT or LONG

N = 1

The number of rows per strip. The image data is organized into strips for fast access to

individual rows when the data is compressed—though this field is valid even if the data is

not compressed.

RowsPerStrip and ImageLength together tell us the number of strips in the entire image.

The equation is

StripsPerImage = (ImageLength + RowsPerStrip - 1) / RowsPerStrip,

assuming integer arithmetic. That is, the number of strips my be computed as the integer

part of the quotient of ImageLength + RowsPerStrip - 1 divided by RowsPerStrip.

Yet another way to write the equation would be:
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StripsPerImage = ceil (ImageLength/RowsPerStrip)

where “ceil” is a ceiling function, rounding up to the next higher integer.

StripsPerImage is NOT a tag. It is merely a value that a TIFF reader will want to

compute, since it gives the number of StripOffsets and StripByteCounts for the image.

Note that either SHORT or LONG values can be used to specify RowsPerStrip. SHORT

values may be used for small TIFF files. It should be noted, however, that earlier TIFF

specification revisions required LONG values and that some software may not expect

SHORT values.

Default is 2**32 - 1, which is effectively infinity. That is, the entire image is one strip.

We do not recommend a single strip, however. Choose RowsPerStrip such that each

strip is about 8K bytes, even if the data is not compressed, since it makes buffering

simpler for readers. The “8K” part is pretty arbitrary, but seems to work well.

See also ImageLength, StripOffsets, StripByteCounts.

SamplesPerPixel

Tag = 277  (115.H)

Type = SHORT

N = 1

The number of components per pixel. SamplesPerPixel is 1 for bilevel, grayscale, and

palette color images. SamplesPerPixel is 3 for RGB images.

Default = 1. See also BitsPerSample, PhotometricInterpretation.

StripByteCounts

Tag = 279  (117.H)

Type = SHORT or LONG

N = StripsPerImage for PlanarConfiguration equal to 1.

= SamplesPerPixel * StripsPerImage for PlanarConfiguration equal to 2

For each strip, the number of bytes in that strip, after compression.

The existence of this field greatly simplifies the chore of buffering compressed data, if

the strip size is reasonable.

No default. See also StripOffsets, RowsPerStrip.

StripOffsets

Tag = 273  (111.H)

Type = SHORT or LONG

N = StripsPerImage for PlanarConfiguration equal to 1.

= SamplesPerPixel * StripsPerImage for PlanarConfiguration equal to 2

For each strip, the byte offset of that strip. The offset is specified with respect to the

beginning of the TIFF file. Note that this implies that each strip has a location indepen-

dent of the locations of other strips. This feature may be useful for editing applications.

This field is the only way for a reader to find the image data, and hence is required.

(Unless TileOffsets is used; see TileOffsets.)

Note that either SHORT or LONG values can be used to specify the strip offsets. SHORT

values may be used for small TIFF files. It should be noted, however, that earlier TIFF
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specifications required LONG strip offsets and that some software may not expect

SHORT values.

For maximum compatibility with MS-DOS and Windows programs, The StripOffsets

array should be less than or equal to 64K bytes in length.

Similarly, the strips themselves, in both compressed and uncompressed forms, should not

be larger than 64K bytes.

No default. See also StripByteCounts, RowsPerStrip.
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Color Description Fields

ColorMap

Tag = 320 (140.H)

Type = SHORT

N = 3 * (2**BitsPerSample)

This tag defines a Red-Green-Blue color map for palette color images. The palette color

pixel value is used to index into all 3 subcurves. For example, a Palette color pixel having

a value of 0 would be displayed according to the 0th entry of the Red, Green, and Blue

subcurves.

The subcurves are stored sequentially. The Red entries come first, followed by the Green

entries, followed by the Blue entries. The length of each subcurve is 2**BitsPerSample.

A ColorMap entry for an 8-bit Palette color image would therefore have 3 * 256 entries.

The width of each entry is 16 bits, as implied by the type of SHORT. 0 represents the

minimum intensity, and 65535 represents the maximum intensity. Black is represented by

0,0,0, and white by 65535, 65535, 65535. The purpose of the color map is to act as a

“lookup” table mapping pixel values from 0 to 2**BitsPerSample-1 into RGB triplets.

See also PhotometricInterpretation—palette color.

No default. ColorMap must be included in all palette color images.

PhotometricInterpretation

Tag = 262  (106.H)

Type = SHORT

N = 1

0 = WhiteIsZero. For bilevel and grayscale images:  0 is imaged as white.

2**BitsPerSample-1 is imaged as black. This is the normal value for Compres-

sion=2.

1 = BlackIsZero. For bilevel and grayscale images:  0 is imaged as black.

2**BitsPerSample-1 is imaged as white. If this value is specified for Compres-

sion=2, the image should display and print reversed.

2 = RGB. In the RGB model, a color is described as a combination of the three primary

colors of light (red, green, and blue) in particular concentrations. For each of the

three components, 0 represents minimum intensity, and 2**BitsPerSample - 1

represents maximum intensity. Thus an RGB value of (0,0,0) represents black, and

(255,255,255) represents white, assuming 8-bit components. For

PlanarConfiguration = 1, the components are stored in the indicated order:  first Red,

then Green, then Blue. For PlanarConfiguration = 2, the StripOffsets for the compo-

nent planes are stored in the indicated order:  first the Red component plane

StripOffsets, then the Green plane StripOffsets, then the Blue plane StripOffsets.

3= Palette color.  In this mode, a color is described with a single component. The

component is used as an index into ColorMap. The component is used to index into

each of the red, green and blue curve tables to retrieve an RGB triplet defining an

actual color. When this PhotometricInterpretation value is used, ColorMap must also

be supplied. SamplesPerPixel must be 1.
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4 = Transparency Mask.

This means that the image is used to define an irregularly shaped region of another

image in the same TIFF file. SamplesPerPixel and BitsPerSample must be 1.

PackBits compression is recommended. The 1-bits define the interior of the region;

the 0-bits define the exterior of the region.

A reader application can use the mask to determine which parts of the image to

display. Main image pixels that correspond to 1-bits in the transparency mask are

imaged to the screen or printer, but main image pixels that correspond to 0-bits in the

mask are not displayed or printed.

The image mask is typically at a higher resolution than the main image, if the main

image is grayscale or color, so that the edges can be sharp.

There is no default for PhotometricInterpretation, and it is required. Do not rely on

applications defaulting to what you want!
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Resolution Fields

ResolutionUnit

Tag = 296 (128.H)

Type = SHORT

N = 1

To be used with XResolution and YResolution.

1 = No absolute unit of measurement. Used for images that may have a non-square aspect

ratio, but no meaningful absolute dimensions.

The drawback of ResolutionUnit=1 is that different applications will import the image at

different sizes. Even if the decision is quite arbitrary, it might be better to use dots per

inch or dots per centimeter, and pick XResolution and YResolution such that the aspect

ratio is correct and the maximum dimension of the image is about four inches (the

“four” is arbitrary.)

2 = Inch.

3 = Centimeter.

Default is 2. See also XResolution, YResolution.

XResolution

Tag = 282  (11A.H)

Type = RATIONAL

N = 1

The number of pixels per ResolutionUnit in the ImageWidth direction.

It is, of course, not mandatory that the image be actually displayed or printed at the size

implied by this parameter. It is up to the application to use this information as it wishes.

No default. See also YResolution, ResolutionUnit.

YResolution

Tag = 283  (11B.H)

Type = RATIONAL

N = 1

The number of pixels per ResolutionUnit in the ImageLength direction.

No default. See also XResolution, ResolutionUnit.
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Informational Fields

Informational fields are fields that can provide useful information to a user, such as

where the image came from. Most are ASCII fields. An application could have some sort

of “More Info...” dialog box to display such information.

Artist

Tag = 315  (13B.H)

Type = ASCII

Person who created the image.

If you need to attach a Copyright notice to an image, this is the place to do it. In fact,

you may wish to write out the contents of the field immediately after the 8-byte TIFF

header. Just make sure your IFD and field pointers are set accordingly, and you’re all

set.

DateTime

Tag = 306  (132.H)

Type = ASCII

N = 20

Date and time of image creation. Use the format “YYYY:MM:DD HH:MM:SS”, with

hours on a 24-hour clock, and one space character between the date and the time. The

length of the string, including the null, is 20 bytes.

HostComputer

Tag = 316  (13C.H)

Type = ASCII

“ENIAC”, or whatever.

See also Make, Model, Software.

ImageDescription

Tag = 270 (10E.H)

Type = ASCII

For example, a user may wish to attach a comment such as “1988 company picnic” to an

image.

It has been suggested that this is what the newspaper and magazine industry calls a

“slug.”

Make

Tag = 271  (10F.H)

Type = ASCII

Manufacturer of the scanner, video digitizer, or whatever.

See also Model, Software.

Model

Tag = 272  (110.H)

Type = ASCII
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The model name/number of the scanner, video digitizer, or whatever.

This tag is intended for user information only.

See also Make, Software.

Software

Tag = 305  (131.H)

Type = ASCII

Name and release number of the software package that created the image.

This tag is intended for user information only.

See also Make, Model.
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Special Purpose Fields

These fields were defined in earlier versions of the specification, but they are rarely used,

for the most part. They have either been superseded by other fields, have been found to

have serious drawbacks, or are simply not as useful as once thought.

CellLength

Tag = 265  (109.H)

Type = SHORT

N = 1

The length, in 1-bit components, of the dithering/halftoning matrix. Assumes that

Threshholding = 2.

This field, plus CellWidth and Threshholding, are problematic because they cannot

safely be used to reverse-engineer grayscale image data out of dithered/halftoned black-

and-white data, which is their only plausible purpose. The only “right” way to do it is to

not bother with anything like these fields, and instead write some sophisticated pattern-

matching software that can handle screen angles that are not multiples of 45 degrees,

and other such challenging dithered/halftoned data.

So we do not recommend trying to convert dithered or halftoned data into grayscale

data. Dithered and halftoned data require careful treatment to avoid “stretch marks,” but

it can be done. If you want grayscale images, get them directly from the scanner or

frame grabber or whatever.

No default. See also Threshholding.

CellWidth

Tag = 264  (108.H)

Type = SHORT

N = 1

The width, in 1-bit components, of the dithering/halftoning matrix.

No default. See also Threshholding. See the comments for CellLength.

FillOrder

Tag = 266  (10A.H)

Type = SHORT

N = 1

The order of data values within a byte.

1 = most significant bits of the byte are filled first. That is, data values (or code words)

are ordered from high order bit to low order bit within a byte.

2 = least significant bits are filled first. Since little interest has been expressed in least-

significant fill order to date, and since it is easy and inexpensive for writers to

reverse bit order (use a 256-byte lookup table), we recommend that FillOrder=2 be

used only in special-purpose applications.

Note that FillOrder is completely separate from whether the file is an “II” or “MM”

style file. FillOrder affects only the order of bits within a byte. “II” and “MM” affect

only the order of bytes within a word (SHORT) or double word (LONG).
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Default is FillOrder = 1.

FreeByteCounts

Tag = 289  (121.H)

Type = LONG

For each “free block” in the file, the number of bytes in the block.

TIFF readers can ignore FreeOffsets and FreeByteCounts if present.

FreeOffsets and FreeByteCounts do not constitute a remapping of the logical address

space of the file.

Since this information can be generated by scanning the IFDs, StripOffsets, and

StripByteCounts, FreeByteCounts and FreeOffsets are not needed.

In addition, it is not clear what should happen if FreeByteCounts and FreeOffsets exist in

more than one IFD.

See also FreeOffsets.

FreeOffsets

Tag = 288  (120.H)

Type = LONG

For each “free block” in the file, its byte offset.

See also FreeByteCounts.

GrayResponseCurve

Tag = 291 (123.H)

Type = SHORT

N = 2**BitsPerSample

The purpose of the gray response curve and the gray units is to provide more exact

photometric interpretation information for gray scale image data, in terms of optical

density.

The GrayScaleResponseUnits specifies the accuracy of the information contained in the

curve. Since optical density is specified in terms of fractional numbers, this tag is

necessary to know how to interpret the stored integer information. For example, if

GrayScaleResponseUnits is set to 4 (ten-thousandths of a unit), and a

GrayScaleResponseCurve number for gray level 4 is 3455, then the resulting actual value

is 0.3455. Optical densitometers typically measure densities within the range of 0.0 to

2.0.

If the gray scale response curve is known for the data in the TIFF file, and if the gray

scale response of the output device is known, then an intelligent conversion can be made

between the input data and the output device. For example, the output can be made to

look just like the input. In addition, if the input image lacks contrast (as can be seen from

the response curve), then appropriate contrast enhancements can be made.

The purpose of the gray scale response curve is to act as a “lookup”  table mapping

values from 0 to 2**BitsPerSample-1 into specific density values. The 0th element of the

GrayResponseCurve array is used to define the gray value for all pixels having a value of

0, the 1st element of the GrayResponseCurve array is used to define the gray value for all
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pixels having a value of 1, and so on, up to 2**BitsPerSample-1. If your data is “really,”

say, 7-bit data, but you are adding a 1-bit pad to each pixel to turn it into 8-bit data,

everything still works:  If the data is high-order justified, half of your

GrayResponseCurve entries (the odd ones, probably) will never be used, but that doesn’t

hurt anything. If the data is low-order justified, your pixel values will be between 0 and

127, so make your GrayResponseCurve accordingly. What your curve does from 128 to

255 doesn’t matter. Note that low-order justification is probably not a good idea, how-

ever, since not all applications look at GrayResponseCurve. Note also that LZW com-

pression yields the same compression ratio regardless of whether the data is high-order or

low-order justified.

It is permissible to have a GrayResponseCurve even for bilevel (1-bit) images. The

GrayResponseCurve will have 2 values. It should be noted, however, that TIFF B readers

are not required to pay attention to GrayResponseCurves in TIFF B files.

See also GrayResponseUnit, PhotometricInterpretation.

GrayResponseUnit

Tag = 290 (122.H)

Type = SHORT

N = 1

1 = Number represents tenths of a unit.

2 = Number represents hundredths of a unit.

3 = Number represents thousandths of a unit.

4 = Number represents ten-thousandths of a unit.

5 = Number represents hundred-thousandths of a unit.

Modifies GrayResponseCurve.

See also GrayResponseCurve.

For historical reasons, the default is 2. However, for greater accuracy, we recommend

using 3.

MaxSampleValue

Tag = 281  (119.H)

Type = SHORT

N = SamplesPerPixel

The maximum used component value. For example, if the image consists of 6-bit data

low-order-justified into 8-bit bytes, MaxSampleValue will be no greater than 63. This is

field is not to be used to affect the visual appearance of the image when displayed. Nor

should the values of this field affect the interpretation of any other field. Use it for

statistical purposes only.

Default is 2**(BitsPerSample) - 1.

MinSampleValue

Tag = 280  (118.H)

Type = SHORT

N = SamplesPerPixel
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The minimum used component value. This field is not to be used to affect the visual

appearance of the image when displayed. See the comments for MaxSampleValue.

Default is 0.

SubfileType

Tag = 255  (FF.H)

Type = SHORT

N = 1

A general indication of the kind of data that is contained in this subfile. Currently defined

values are:

1 = full resolution image data—ImageWidth, ImageLength, and StripOffsets are

required fields; and

2 = reduced resolution image data—ImageWidth, ImageLength, and StripOffsets are

required fields. It is further assumed that a reduced resolution image is a reduced

version of the entire extent of the corresponding full resolution data.

3 = single page of a multi-page image (see the PageNumber tag description).

Note that several image types can be found in a single TIFF file, with each subfile

described by its own IFD.

No default.

Continued use of this field is not recommended. Writers should instead use the new and

more general NewSubfileType field.

Orientation

Tag = 274 (112.H)

Type = SHORT

N = 1

1 = The 0th row represents the visual top of the image, and the 0th column represents the visual

left hand side.

2 = The 0th row represents the visual top of the image, and the 0th column represents the visual

right hand side.

3 = The 0th row represents the visual bottom of the image, and the 0th column represents the

visual right hand side.

4 = The 0th row represents the visual bottom of the image, and the 0th column represents the

visual left hand side.

5 = The 0th row represents the visual left hand side of the image, and the 0th column represents

the visual top.

6 = The 0th row represents the visual right hand side of the image, and the 0th column represents

the visual top.

7 = The 0th row represents the visual right hand side of the image, and the 0th column represents

the visual bottom.

8 = The 0th row represents the visual left hand side of the image, and the 0th column represents

the visual bottom.

Default is 1.
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This field is recommended for private (non-interchange) use only. Most images are

scanned and stored in the Orientation=1 format, and most TIFF readers can only handle

this case.

Threshholding

Tag = 263  (107.H)

Type = SHORT

N = 1

1 = a bilevel “line art” scan. BitsPerSample must be 1.

2 = a “dithered” scan, usually of continuous tone data such as photographs.

BitsPerSample must be 1.

3 = Error Diffused.

Default is Threshholding = 1. See also CellWidth, CellLength.
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Section 10: PackBits Compression

Abstract

This document describes a simple compression scheme for bilevel scanned and paint type

files.

Motivation

The TIFF specification defines a number of compression schemes. Compression type 1 is

really no compression, other than basic pixel packing. Compression type 2, based on

CCITT 1D compression, is powerful, but not trivial to implement. LZW compression is

typically quite good at compression most bilevel images, as well as many deeper images

such as palette color and grayscale images, but is also not trivial to implement. PackBits

is a simple but often effective alternative.

Description

Several good schemes were already in use in various settings. We somewhat arbitrarily

picked the Apple Macintosh PackBits scheme. It is byte oriented, so there is no problem

with word alignment. And it has a good worst case behavior (at most 1 extra byte for

every 128 input bytes). For Macintosh users, there are toolbox utilities PackBits and

UnPackBits that will do the work for you, but it is easy to implement your own routines.

A pseudo code fragment to unpack might look like this:

Loop until you get the number of unpacked bytes you are expecting:

Read the next source byte into n.

If n is between 0 and 127 inclusive, copy the next n+1 bytes literally.

Else if n is between -127 and -1 inclusive, copy the next byte -n+1 times.

Else if n is -128, noop.

Endloop

In the inverse routine, it’s best to encode a 2-byte repeat run as a replicate run except

when preceded and followed by a literal run, in which case it’s best to merge the three

into one literal run. Always encode 3-byte repeats as replicate runs.

So that’s the algorithm. Here are some other rules:

• Each row must be packed separately. Do not compress across row boundaries.

• The number of uncompressed bytes per row is defined to be (ImageWidth + 7) / 8.

If the uncompressed bitmap is required to have an even number of bytes per row,

decompress into word-aligned buffers.

• If a run is larger than 128 bytes, simply encode the remainder of the run as one or

more additional replicate runs.

When PackBits data is uncompressed, the result should be interpreted as per compression

type 1 (no compression).
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Section 11: Modified Huffman

Compression

Abstract

This document describes a method for compressing bilevel data that is based on the

CCITT Group 3 1D facsimile compression scheme.

References

1. “Standardization of Group 3 facsimile apparatus for document transmission,”

Recommendation T.4, Volume VII, Fascicle VII.3, Terminal Equipment and

Protocols for Telematic Services, The International Telegraph and Telephone

Consultative Committee (CCITT), Geneva, 1985, pages 16 through 31.

2. “Facsimile Coding Schemes and Coding Control Functions for Group 4 Facsimile

Apparatus,” Recommendation T.6, Volume VII, Fascicle VII.3, Terminal Equipment

and Protocols for Telematic Services, The International Telegraph and Telephone

Consultative Committee (CCITT), Geneva, 1985, pages 40 through 48.

We do not believe that these documents are necessary in order to implement Compres-

sion=2. We have included (verbatim in most places) all the pertinent information in this

section. However, if you wish to order the documents, you can write to ANSI, Attention:

Sales, 1430 Broadway, New York, N.Y., 10018. Ask for the publication listed above—it

contains both Recommendation T.4 and T.6.

Relationship to the CCITT Specifications

The CCITT Group 3 and Group 4 specifications describe communications protocols for a

particular class of devices. They are not by themselves sufficient to describe a disk data

format. Fortunately, however, the CCITT coding schemes can be readily adapted to this

different environment. The following is one such adaptation. Most of the language is

copied directly from the CCITT specifications.

Coding Scheme

A line (row) of data is composed of a series of variable length code words. Each code

word represents a run length of either all white or all black. (Actually, more than one

code word may be required to code a given run, in a manner described below.) White

runs and black runs alternate.

In order to ensure that the receiver (decompressor) maintains color synchronization, all

data lines will begin with a white run length code word set. If the actual scan line begins

with a black run, a white run length of zero will be sent (written). Black or white run

lengths are defined by the code words in Tables 1 and 2. The code words are of two
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types: Terminating code words and Make-up code words. Each run length is represented

by zero or more Make-up code words followed by exactly one Terminating code word.

Run lengths in the range of 0 to 63 pels (pixels) are encoded with their appropriate

Terminating code word. Note that there is a different list of code words for black and

white run lengths.

Run lengths in the range of 64 to 2623 (2560+63) pels are encoded first by the Make-up

code word representing the run length that is nearest to, not longer than, that required.

This is then followed by the Terminating code word representing the difference between

the required run length and the run length represented by the Make-up code.

Run lengths in the range of lengths longer than or equal to 2624 pels are coded first by

the Make-up code of 2560. If the remaining part of the run (after the first Make-up code

of 2560) is 2560 pels or greater, additional Make-up code(s) of 2560 are issued until the

remaining part of the run becomes less than 2560 pels. Then the remaining part of the run

is encoded by Terminating code or by Make-up code plus Terminating code, according to

the range mentioned above.

It is considered an unrecoverable error if the sum of the run lengths for a line does not

equal the value of the ImageWidth field.

New rows always begin on the next available byte boundary.

No EOL code words are used. No fill bits are used, except for the ignored bits at the end

of the last byte of a row. RTC is not used.

By convention, the normal PhotometricInterpretation for Compression=2 is 0

(WhiteIsZero). A PhotometricInterpretation value of 1 (BlackIsZero) shall have the effect

of reversing black and white in the image.
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Table 1/T.4  Terminating codes

White Black
 run Code  run Code
length word length word
 ———— ———— —————— ————

 0 00110101  0 0000110111
 1 000111  1 010
 2 0111  2 11
 3 1000  3 10
 4 1011  4 011
 5 1100  5 0011
 6 1110  6 0010
 7 1111  7 00011
 8 10011  8 000101
 9 10100  9 000100
10 00111 10 0000100
11 01000 11 0000101
12 001000 12 0000111
13 000011 13 00000100
14 110100 14 00000111
15 110101 15 000011000
16 101010 16 0000010111
17 101011 17 0000011000
18 0100111 18 0000001000
19 0001100 19 00001100111
20 0001000 20 00001101000
21 0010111 21 00001101100
22 0000011 22 00000110111
23 0000100 23 00000101000
24 0101000 24 00000010111
25 0101011 25 00000011000
26 0010011 26 000011001010
27 0100100 27 000011001011
28 0011000 28 000011001100
29 00000010 29 000011001101
30 00000011 30 000001101000
31 00011010 31 000001101001
32 00011011 32 000001101010
33 00010010 33 000001101011
34 00010011 34 000011010010
35 00010100 35 000011010011
36 00010101 36 000011010100
37 00010110 37 000011010101
38 00010111 38 000011010110
39 00101000 39 000011010111
40 00101001 40 000001101100
41 00101010 41 000001101101
42 00101011 42 000011011010
43 00101100 43 000011011011
44 00101101 44 000001010100
45 00000100 45 000001010101
46 00000101 46 000001010110
47 00001010 47 000001010111
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48 00001011 48 000001100100
49 01010010 49 000001100101
50 01010011 50 000001010010
51 01010100 51 000001010011
52 01010101 52 000000100100
53 00100100 53 000000110111
54 00100101 54 000000111000
55 01011000 55 000000100111
56 01011001 56 000000101000
57 01011010 57 000001011000
58 01011011 58 000001011001
59 01001010 59 000000101011
60 01001011 60 000000101100
61 00110010 61 000001011010
62 00110011 62 000001100110
63 00110100 63 000001100111

Table 2/T.4  Make-up codes

White Black
 run Code  run Code
length word length word
—————— ———— —————— ————

 64 11011  64 0000001111
 128 10010  128 000011001000
 192 010111  192 000011001001
 256 0110111  256 000001011011
 320 00110110  320 000000110011
 384 00110111  384 000000110100
 448 01100100  448 000000110101
 512 01100101  512 0000001101100
 576 01101000  576 0000001101101
 640 01100111  640 0000001001010
 704 011001100  704 0000001001011
 768 011001101  768 0000001001100
 832 011010010  832 0000001001101
 896 011010011  896 0000001110010
 960 011010100  960 0000001110011
1024 011010101 1024 0000001110100
1088 011010110 1088 0000001110101
1152 011010111 1152 0000001110110
1216 011011000 1216 0000001110111
1280 011011001 1280 0000001010010
1344 011011010 1344 0000001010011
1408 011011011 1408 0000001010100
1472 010011000 1472 0000001010101
1536 010011001 1536 0000001011010
1600 010011010 1600 0000001011011
1664 011000 1664 0000001100100
1728 010011011 1728 0000001100101
 EOL 000000000001  EOL 000000000001
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Additional make-up codes

White
and
Black Make-up
run code
length word
—————— ————

1792 00000001000
1856 00000001100
1920 00000001101
1984 000000010010
2048 000000010011
2112 000000010100
2176 000000010101
2240 000000010110
2304 000000010111
2368 000000011100
2432 000000011101
2496 000000011110
2560 000000011111
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Section 12: TIFF Administration

For Further Information

On-line files: A version of the TIFF specification in PostScript format can be found on

CompuServe ("Go Aldus") and on AppleLink (Aldus Developers Icon). Sample files

from the TIFF Developer Kit (see below) can also be found at these locations.

By contacting the Aldus Developers Desk (see contact information on the first page), you

can:

• order a TIFF Developer Kit, containing a hard copy of the specification, sample

TIFF-parsing and decompression code, and sample TIFF files. All files are in both

DOS and Apple Macintosh formats. There is a fee.

• become a member of the Aldus Developers Association

• ask questions relating to the use of TIFF in Aldus products, via the CompuServe or

AppleLink forums. By using one of these forums, an Aldus representative or another

developer may be able to assist you. Please include your e-mail and fax addresses.

• reserve private tags or values (see below).

Because of the tremendous growth in the usage of TIFF, Aldus is unfortunately not able

to provide a general consulting service for TIFF implementors. TIFF developers are

encouraged to study sample TIFF files and sample source code, read TIFF documentation

thoroughly, and work with other developers of other products that are important to you in

terms of image data interchange. A number of other vendors are providing various TIFF

services, especially in relationship to their own products. Contact the appropriate product

manager or developer support service group.

We do, however, do our best to answer questions relating to the use of TIFF in Aldus

products, especially if you are a member of the Aldus Developers Association.

If you are an experienced TIFF developer that is interested in contract programming for

other developers, please let us know, so that we can give your name to others that may

need your services.

Private Fields and Values

An organization may wish to store information that is meaningful to only that organiza-

tion in a TIFF file. Tags numbered 32768 or higher are reserved for that purpose. Upon

request, the administrator (the Aldus Developers Desk) will allocate and register a block

of private tags for an organization, to avoid possible conflicts with other organizations.

Tags are normally allocated in blocks of five or less. You do not need to tell the TIFF

administrator or anyone else what you are going to use them for.

Private enumerated values can be accommodated in a similar fashion. For example, you

may wish to experiment with a new compression scheme within TIFF. Enumeration

constants numbered 32768 or higher are reserved for private usage. Upon request, the

administrator will allocate and register one or more enumerated values for a particular
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field (Compression, in our example), to avoid possible conflicts.

Tags and values which are allocated in the private number range are not prohibited from

being included in a future revision of this specification. Several such instances can be

found in the TIFF specification.

Do not choose your own tag numbers. If you do, it could cause serious compatibility

problems some day.

If you need more than 5 or 10 tags, we suggest that you reserve a single private tag,

define it as a LONG, and use its value as a pointer (offset) to a private IFD or other data

structure of your choosing. Within that IFD, you can use whatever tags you want, since

no one else will even know that it is an IFD unless you tell them. This gives you some

65,000 private tags.

Submitting a Proposal

Any person or group that wishes to propose a change or addition to the TIFF specifica-

tion should prepare a proposal that includes the following information:

• Name of the person or group making the request, and your affiliation.

• The reason for the request.

• A list of changes exactly as you propose that they appear in the specification. Use

inserts, callouts, or other obvious editorial techniques to indicate areas of change, and

number each change.

• Discussion of the potential impact on the installed base.

• A list of contacts outside your company who may support your position. Include their

affiliation.

Please send your proposal to Internet address: tiff-input@aldus.com. (From AppleLink,

you can send to: tiff-input@aldus.com@internet#. From CompuServe, you can send to:

>INTERNET:tiff-input@aldus.com.) Do not send TIFF implementation questions to this

address; see above for Aldus Developers Desk TIFF support policies.

The TIFF Advisory Committee

The TIFF Advisory Committee is a working group of TIFF experts from a number of

hardware and software manufacturers. It was formed in the spring of 1991, for the

purpose of providing a forum to debate and refine proposals for the TIFF 6.0 release of

the specification. It is not yet clear whether this will be an ongoing group, or whether it

will go into a period of hibernation until momentum builds for another major release of

the TIFF specification.

If you are a TIFF expert and are interested in spending significant time and effort to work

on this committee, contact the Aldus Developers Desk for further information. For the

TIFF 6.0 release, the group met every two or three months, typically somewhere on the

west coast of the U.S. Accessibility via e-mail (typically Internet or AppleLink) is a

requirement for membership, since that has proven to be an invaluable means for getting

work done between meetings.
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Other TIFF Extensions

The Aldus TIFF sections on CompuServe and AppleLink will contain proposed exten-

sions from Aldus and other companies that are not yet approved by the TIFF Advisory

Committee.

Many of these proposals will never be approved or even considered by the TIFF Advi-

sory Committee, especially if they represent specialized uses of TIFF that do not fall

within the domain of publishing or general graphics/picture interchange. Use them at

your own risk; it is unlikely that these features will be widely supported. And if you do

write files that incorporate these extensions, be sure to either not call them TIFF files, or

in some other way mark them so that they will not easily be confused with mainstream

TIFF files.

Aldus will provide a place on Compuserve and Applelink for storing such documents.

Contact the Aldus Developers Desk for instructions. We recommend that all submissions

be in the form of either simple text or in a portable PostScript form that can be down-

loaded to any PostScript printer in any computing environment.

If a non-Aldus contact name is listed, please use that contact rather than Aldus for

submitting requests for future enhancements to that extension.



51

TIFF 6.0 Draft 1—February 14, 1992

Part 2:  TIFF Extensions

Part 2 contains extensions to Baseline TIFF, as well as several pieces of auxiliary

documentation that may be useful to developers.

The features described in this part were either contained in earlier versions of the

specification, or have been approved by the TIFF Advisory Committee.

TIFF Extensions are TIFF features that may not be supported by all TIFF readers. TIFF

creators who use these features will have to work closely with TIFF readers in their part

of the industry to ensure successful interchange.

Some of the extensions were written by Aldus, and some were written by other develop-

ers. If a non-Aldus contact name is listed, please use that contact rather than Aldus for

submitting requests for future enhancements to that extension.
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Section 13: Tags vs Fixed Fields

If you like reading about file format philosophy, this section is for you. It contains

absolutely nothing that you need to know in order to read or write TIFF files.

A file format is defined by both form (structure) and content. The content of TIFF

consists of definitions of individual fields. It is therefore the content that we are ulti-

mately interested in. The structure merely tells us how to find the fields. Yet the structure

deserves serious consideration for a number of reasons that are not at all obvious at first

glance. Since the structure described herein departs significantly from several other

approaches, it may be useful to discuss the rationale behind it.

The simplest, most straightforward structure for something like an image file is a

positional format. In a positional scheme, the location of the data defines what the data

means. For example, the field for “number of rows” might begin at byte offset 30 in the

image file.

This approach is simple and easy to implement and is perfect for static environments. But

if a significant amount of ongoing change must be accommodated, subtle problems begin

to appear. For example, suppose that a field must be superseded by a new, more general

field. You could bump a version number to flag the change. Then new software has no

problem doing something sensible with old data, and all old software will reject the new

data, even software that didn’t care about the old field. This may seem like no more than

a minor annoyance at first glance, but causing old software to break more often than it

would really need to can be very costly and, inevitably, causes much gnashing of teeth

among customers.

Furthermore, it can be avoided. One approach is to store a “valid” flag bit for each field.

Now you don’t have to bump the version number, as long as you can put the new field

somewhere that doesn’t disturb any of the old fields. Old software that didn’t care about

that old field anyway can continue to function. (Old software that did care will of course

have to give up, but this is an unavoidable price to be paid for the sake of progress,

barring total omniscience.)

Another problem that crops up frequently is that certain fields are likely to make sense

only if other fields have certain values. This is not such a serious problem in practice; it

just makes things more confusing. Nevertheless, we note that the “valid” flag bits

described in the previous paragraph can help to clarify the situation.

Field-dumping programs can be very helpful for diagnostic purposes. A desirable

characteristic of such a program is that it doesn’t have to know much about what it is

dumping. In particular, it would be nice if the program could dump ASCII data in ASCII

format, integer data in integer format, and so on, without having to teach the program

about new fields all the time. So maybe we should add a “data type” component to our

fields, plus information on how long the field is, so that our dump program can walk

through the fields without knowing what the fields “mean.”

But note that if we add one more component to each field, namely a tag that tells what the

field means, we can dispense with the “valid” flag bits, and we can also avoid wasting

space on the non-valid fields in the file. Simple image creation applications can write out
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several fields and be done.

We have now derived the essentials of a tag-based image file format.

Finally, a caveat. A tag based scheme cannot guarantee painless growth. But is does

provide a useful tool to assist in the process.
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Section 14: New General Purpose

Tags

ExtraSamples

Tag = 338 (152.H)

Type = SHORT

N = m

This tag specifies that each pixel has m extra components, whose interpretation is defined

by the one of the values listed below. When this tag is used, the SamplesPerPixel tag has

a value that is greater than the PhotometricInterpretation would suggest.

For example, full-color RGB data normally has SamplesPerPixel=3. If SamplesPerPixel

is greater than 3, then the ExtraSamples tag describes the meaning of the extra samples.

E.g., if SamplesPerPixel is 5, then ExtraSamples will contain 2 values, one for each extra

sample.

ExtraSamples is typically used when including non-color information, such as opacity, in

an image.

The following table gives the possible values for each item in the tag's value:

Value Description

0 Undefined data

1 Associated Alpha data (with pre-multiplied color)

2 Unassociated Alpha data

Associated Alpha data is opacity information; it is fully described in ALPHA data

section. Unassociated Alpha data is transparency information that logically exists

independent of an image; it is commonly called (collectively) a soft matte. Note that

including both Unassociated and Associated Alpha is undefined because Associated

Alpha specifies that color components are pre-multiplied by the alpha component, while

Unassociated Alpha specifies the opposite.

By convention, extra components that are present must be stored as the “last compo-

nents” in each pixel. For example, if SamplesPerPixel is 4 and there is 1 extra compo-

nent, then it is located in the last component location (SamplesPerPixel-1) in each pixel.

Comments

Components designated as “extra” are just like other components in a pixel. In particular,

the size of such components is defined by the value of the BitsPerSample tag.

Note that, with the introduction of this tag, TIFF readers must not assume a particular

SamplesPerPixel value based on the value of the PhotometricInterpretation tag. For

example, if it is an RGB file, SamplesPerPixel may be greater than 3.
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Section 15: Document Storage and

Retrieval

These fields may be useful for document storage and retrieval applications. They will

very likely be ignored by other applications.

DocumentName

Tag = 269  (10D.H)

Type = ASCII

The name of the document from which this image was scanned.

See also PageName.

PageName

Tag = 285  (11D.H)

Type = ASCII

The name of the page from which this image was scanned.

See also DocumentName.

No default.

PageNumber

Tag = 297  (129.H)

Type = SHORT

N = 2

This tag is used to specify page numbers of a multiple page (e.g. facsimile) document.

Two SHORT values are specified. The first value is the page number; the second value is

the total number of pages in the document.

Note that pages need not appear in numerical order. The first page is 0 (zero).

No default.

XPosition

Tag = 286  (11E.H)

Type = RATIONAL

N = 1

The X offset of the left side of the image, with respect to the left side of the page, in

ResolutionUnits.

No default. See also YPosition.

YPosition

Tag = 287  (11F.H)

Type = RATIONAL

N = 1

The Y offset of the top of the image, with respect to the top of the page, in
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ResolutionUnits. In the TIFF coordinate scheme, the positive Y direction is down, so that

YPosition is always positive.

No default. See also XPosition.
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Section 16: LZW Compression

Abstract

This document describes an adaptive compression scheme for raster images.

Restrictions

We have been informed by UNISYS Corporation that UNISYS believes that one or more

of their patents covers any and all usages of the LZW (Ziv-Lempel) compression tech-

nique, including the use of LZW compressed data within a TIFF file. At this time, UNISYS

has chosen not to grant royalty-free licensing for developers who write software that

reads and writes TIFF files. The same is true for any other image file format that

incorporates LZW compression.

The Aldus Corporation was unaware of any potential patent infringement with respect to

use of LZW compression. The LZW research papers at our disposal made no mention of

patent restrictions, and LZW compression was in widespread use long before its inclu-

sion in TIFF, both in commercial and public domain software packages.

We therefore do not encourage the use of LZW within TIFF files. The financial and

administrative burdens resulting from licensing would pose an undue burden especially

for smaller developers.

We regret any hardhip that this issue will cause for the desktop computer developer and

user communities.

If you wish to discuss the issue further with UNISYS or discuss licensing arrangements,

the current contact at UNISYS is Rob Pressman, (215) 986-4111.

The main UNISYS LZW patent is U.S. Patent #4,558,302.

Reference

Terry A. Welch, “A Technique for High Performance Data Compression”, IEEE Com-

puter, vol. 17 no. 6 (June 1984). Describes the basic Lempel-Ziv & Welch (LZW)

algorithm. The author’s goal in the article is to describe a hardware-based compressor

that could be built into a disk controller or database engine, and used on all types of data.

There is no specific discussion of raster images. We intend to give sufficient information

in this Section so that the article is not required reading.

Requirements

A compression scheme with the following characteristics should work well in a desktop

publishing environment:

• Must work well for images of any bit depth, including images deeper than 8 bits per

component.
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• Must be effective:  an average compression ratio of at least 2:1 or better. And it must

have a reasonable worst-case behavior, in case something really strange is thrown at

it.

• Should not depend on small variations between pixels. Palette color images tend to

contain abrupt changes in index values, due to common patterning and dithering

techniques. These abrupt changes do tend to be repetitive, however, and the scheme

should make use of this fact.

• For images generated by paint programs, the scheme should not depend on a

particular pattern width. 8x8 pixel patterns are common now, but we should not

assume that this situation will not change.

• Must be fast. It should not take more than 5 seconds to decompress a 100K byte

grayscale image on a 68020- or 386-based computer. Compression can be slower,

but probably not by more than a factor of 2 or 3.

• The level of implementation complexity must be reasonable. We would like some-

thing that can be implemented in no more than a couple of weeks by a competent

software engineer with some experience in image processing. The compiled code for

compression and decompression combined should be no more than about 10K.

• Does not require floating point software or hardware.

The following sections describe an algorithm based on the “LZW”  (Lempel-Ziv &

Welch) technique that meets the above requirements. In addition meeting our require-

ments, LZW has the following characteristics:

• LZW is fully reversible. All information is preserved. But if noise or information is

removed from an image, perhaps by smoothing or zeroing some low-order bitplanes,

LZW compresses images to a smaller size. Thus, 5-bit, 6-bit, or 7-bit data masquer-

ading as 8-bit data compresses better than true 8-bit data. Smooth images also

compress better than noisy images, and simple images compress better than complex

images.

° On a 68082- or 386-based computer, LZW software can be written to compress at

between 30K and 80K bytes per second, depending on image characteristics. LZW

decompression speeds are typically about 50K bytes per second.

° LZW works well on bilevel images, too. It always beats PackBits, and generally ties

CCITT 1D (Modified Huffman) compression, on our test images. Tying CCITT 1D

is impressive in that LZW seems to be considerably faster than CCITT 1D, at least in

our implementation.

° Our implementation is written in C, and compiles to about 2K bytes of object code

each for the compressor and decompressor.

° One of the nice things about LZW is that it is used quite widely in other applications

such as archival programs, and is therefore more of a known quantity.

The Algorithm

Each strip is compressed independently. We strongly recommend that RowsPerStrip be

chosen such that each strip contains about 8K bytes before compression. We want to keep

the strips small enough so that the compressed and uncompressed versions of the strip
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can be kept entirely in memory even on small machines, but large enough to maintain

nearly optimal compression ratios.

The LZW algorithm is based on a translation table, or string table, that maps strings of

input characters into codes. The TIFF implementation uses variable-length codes, with a

maximum code length of 12 bits. This string table is different for every strip, and,

remarkably, does not need to be kept around for the decompressor. The trick is to make

the decompressor automatically build the same table as is built when compressing the

data. We use a C-like pseudocode to describe the coding scheme:

InitializeStringTable();

WriteCode(ClearCode);

Ω = the empty string;

for each character in the strip {

K = GetNextCharacter();

if Ω+K is in the string table {

Ω = Ω+K; /* string concatenation */

} else {

WriteCode (CodeFromString(Ω));

AddTableEntry(Ω+K);

Ω = K;

}

} /* end of for loop */

WriteCode (CodeFromString(Ω));

WriteCode (EndOfInformation);

That’s it. The scheme is simple, although it is fairly challenging to implement efficiently.

But we need a few explanations before we go on to decompression.

The “characters” that make up the LZW strings are bytes containing TIFF uncompressed

(Compression=1) image data, in our implementation. For example, if BitsPerSample is 4,

each 8-bit LZW character will contain two 4-bit pixels. If BitsPerSample is 16, each 16-

bit pixel will span two 8-bit LZW characters.

(It is also possible to implement a version of LZW where the LZW character depth equals

BitsPerSample, as was described by Draft 2 of Revision 5.0. But there is a major problem

with this approach. If BitsPerSample is greater than 11, we can not use 12-bit-maximum

codes, so that the resulting LZW table is unacceptably large. Fortunately, due to the

adaptive nature of LZW, we do not pay a significant compression ratio penalty for

combining several pixels into one byte before compressing. For example, our 4-bit

sample images compressed about 3 percent worse, and our 1-bit images compressed

about 5 percent better. And it is easier to write an LZW compressor that always uses the

same character depth than it is to write one which can handle varying depths.)

We can now describe some of the routine and variable references in our pseudocode:

InitializeStringTable() initializes the string table to contain all possible single-character

strings. There are 256 of them, numbered 0 through 255, since our characters are bytes.
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WriteCode() writes a code to the output stream. The first code written is a Clear code,

which is defined to be code #256.

Ω is our “prefix string.”

GetNextCharacter() retrieves the next character value from the input stream. This will be

number between 0 and 255, since our characters are bytes.

The “+” signs indicate string concatenation.

AddTableEntry() adds a table entry. (InitializeStringTable() has already put 256 entries in

our table. Each entry consists of a single-character string, and its associated code value,

which is, in our application, identical to the character itself. That is, the 0th entry in our

table consists of the string <0>, with corresponding code value of <0>, the 1st entry in

the table consists of the string <1>, with corresponding code value of <1>, ..., and the

255th entry in our table consists of the string <255>, with corresponding code value of

<255>.)  So the first entry that we add to our string table will be at position 256, right?

Well, not quite, since we will reserve code #256 for a special “Clear” code, and code

#257 for a special “EndOfInformation” code that we will write out at the end of the strip.

So the first multiple-character entry added to the string table will be at position 258.

Let’s try an example. Suppose we have input data that looks like:

Pixel 0: <7>

Pixel 1: <7>

Pixel 2: <7>

Pixel 3: <8>

Pixel 4: <8>

Pixel 5: <7>

Pixel 6: <7>

Pixel 7: <6>

Pixel 8: <6>

First, we read Pixel 0 into K. ΩK is then simply <7>, since Ω is the empty string at this

point. Is the string <7> already in the string table? Of course, since all single character

strings were put in the table by InitializeStringTable(). So set Ω equal to <7>, and go to

the top of the loop.

Read Pixel 1 into K. Does ΩK (<7><7>) exist in the string table? No, so we get to do

some real work. We write the code associated with Ω to output (write <7> to output), and

add ΩK (<7><7>) to the table as entry 258. Store K (<7>) into Ω. Note that although we

have added the string consisting of Pixel 0 and Pixel 1 to the table, we “re-use” Pixel 1 as

the beginning of the next string.

Back at the top of the loop. We read Pixel 2 into K. Does ΩK (<7><7>) exist in the string

table? Yes, the entry we just added, entry 258, contains exactly <7><7>. So we just add

K onto the end of Ω, so that Ω is now <7><7>.

Back at the top of the loop. We read Pixel 3 into K. Does ΩK (<7><7><8>) exist in the

string table? No, so write the code associated with Ω (<258>) to output, and add ΩK to

the table as entry 259. Store K (<8>) into Ω.

Back at the top of the loop. We read Pixel 4 into K. Does ΩK (<8><8>) exist in the string
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table? No, so write the code associated with Ω (<8>) to output, and add ΩK to the table

as entry 260. Store K (<8>) into Ω.

Continuing, we get the following results:

After reading: We write to output: And add table entry:

Pixel 0

Pixel 1 <7> 258: <7><7>

Pixel 2

Pixel 3 <258> 259: <7><7><8>

Pixel 4 <8> 260: <8><8>

Pixel 5 <8> 261: <8><7>

Pixel 6

Pixel 7 <258> 262: <7><7><6>

Pixel 8 <6> 263: <6><6>

WriteCode() also requires some explanation. The output code stream,

<7><258><8><8><258><6>... in our example, should be written using as few bits as

possible. When we are just starting out, we can use 9-bit codes, since our new string table

entries are greater than 255 but less than 512. After adding table entry 511, switch to 10-

bit codes (i.e., entry 512 should be a 10-bit code.) Likewise, switch to 11-bit codes after

table entry 1023, and 12-bit codes after table entry 2047. We will somewhat arbitrarily

limit ourselves to 12-bit codes, so that our table can have at most 4096 entries. If we push

it any farther, tables tend to get too large.

Whenever you add a code to the output stream, it “counts” toward the decision about

bumping the code bit length. This is important when writing the last code word before an

EOI code or ClearCode, to avoid code length errors.

What happens if we run out of room in our string table? This is where the afore-men-

tioned Clear code comes in. As soon as we use entry 4094, we write out a (12-bit) Clear

code. (If we wait any longer to write the Clear code, the decompressor might try to

interpret the Clear code as a 13-bit code.) At this point, the compressor re-initializes the

string table and starts writing out 9-bit codes again.

Note that whenever you write a code and add a table entry, Ω is not left empty. It

contains exactly one character. Be careful not to lose it when you write an end-of-table

Clear code. You can either write it out as a 12-bit code before writing the Clear code, in

which case you will want to do it right after adding table entry 4093, or after the clear

code as a 9-bit code. Decompression gives the same result in either case.

To make things a little simpler for the decompressor, we will require that each strip

begins with a Clear code, and ends with an EndOfInformation code.

Every LZW-compressed strip must begin on a byte boundary. It need not begin on a word

boundary. LZW compression codes are stored into bytes in high-to-low-order fashion,

i.e., FillOrder is assumed to be 1. The compressed codes are written as bytes, not words,

so that the compressed data will be identical regardless of whether it is an ‘II’ or ‘MM’

file.

Note that the LZW string table is a continuously updated history of the strings that have
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been encountered in the data. It thus reflects the characteristics of the data, providing a

high degree of adaptability.

LZW Decoding

The procedure for decompression is a little more complicated, but still not too bad:

while ((Code = GetNextCode()) != EoiCode) {

if (Code == ClearCode) {

InitializeTable();

Code = GetNextCode();

if (Code == EoiCode)

break;

WriteString(StringFromCode(Code));

OldCode = Code;

}  /* end of ClearCode case */

else {

if (IsInTable(Code)) {

WriteString(StringFromCode(Code));

AddStringToTable(StringFromCode(OldCode

)+FirstChar(StringFromCode(Code)));

OldCode = Code;

} else {

OutString = StringFromCode(OldCode) +

FirstChar(StringFromCode(OldCode));

WriteString(OutString);

AddStringToTable(OutString);

OldCode = Code;

}

} /* end of not-ClearCode case */

} /* end of while loop */

The function GetNextCode() retrieves the next code from the LZW-coded data. It must

keep track of bit boundaries. It knows that the first code that it gets will be a 9-bit code.

We add a table entry each time we get a code, so GetNextCode() must switch over to 10-

bit codes as soon as string #510 is stored into the table. Similarly, the switch is made to

11-bit codes after #1022, and to 12-bit codes after #2046.

The function StringFromCode() gets the string associated with a particular code from the

string table.

The function AddStringToTable() adds a string to the string table. The “+” sign joining

the two parts of the argument to AddStringToTable indicate string concatenation.



63

TIFF 6.0 Draft 1—February 14, 1992

StringFromCode() looks up the string associated with a given code.

WriteString() adds a string to the output stream.

When SamplesPerPixel Is Greater Than 1

We have so far described the compression scheme as if SamplesPerPixel were always 1,

as will be the case with palette color and grayscale images. But what do we do with RGB

image data?

Tests on our sample images indicate that the LZW compression ratio is nearly identical

regardless of whether PlanarConfiguration=1 or PlanarConfiguration=2, for RGB images.

So use whichever configuration you prefer, and simply compress the bytes in the strip.

It is worth cautioning that compression ratios on our test RGB images were disappointing

low: somewhere between 1.1 to 1 and 1.5 to 1, depending on the image. Vendors are

urged to do what they can to remove as much noise from their images as possible.

Preliminary tests indicate that significantly better compression ratios are possible with

less noisy images. Even something as simple as zeroing out one or two least-significant

bitplanes may be quite effective, with little or no perceptible image degradation.

Implementation

The exact structure of the string table and the method used to determine if a string is

already in the table are probably the most significant design decisions in the implementa-

tion of a LZW compressor and decompressor. Hashing has been suggested as a useful

technique for the compressor. We have chosen a tree based approach, with good results.

The decompressor is actually more straightforward, as well as faster, since no search is

involved—strings can be accessed directly by code value.

Performance

Many people do not realize that the performance of any compression scheme depends

greatly on the type of data to which it is applied. A scheme that works well on one data

set may do poorly on the next.

But since we do not want to burden the world with too many compression schemes, an

adaptive scheme such as LZW that performs quite well on a wide range of images is very

desirable. LZW may not always give optimal compression ratios, but its adaptive nature

and relative simplicity seem to make it a good choice.

Experiments thus far indicate that we can expect compression ratios of between 1.5 and

3.0 to 1 from LZW, with no loss of data, on continuous tone grayscale scanned images. If

we zero the least significant one or two bitplanes of 8-bit data, higher ratios can be

achieved. These bitplanes often consist chiefly of noise, in which case little or no loss in

image quality will be perceived. Palette color images created in a paint program generally

compress much better than continuous tone scanned images, since paint images tend to be

more repetitive. It is not unusual to achieve compression ratios of 10 to 1 or better when

using LZW on palette color paint images.

By way of comparison, PackBits, used in TIFF for black and white bilevel images, does
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not do well on color paint images, much less continuous tone grayscale and color images.

1.2 to 1 seemed to be about average for 4-bit images, and 8-bit images are worse.

It has been suggested that the CCITT 1D scheme could be used for continuous tone

images, by compressing each bitplane separately. No doubt some compression could be

achieved, but it seems unlikely that a scheme based on a fixed table that is optimized for

short black runs separated by longer white runs would be a very good choice on any of

the bitplanes. It would do quite well on the high-order bitplanes (but so would a simpler

scheme like PackBits), and would do quite poorly on the low-order bitplanes. We believe

that the compression ratios would generally not be very impressive, and the process

would in addition be quite slow. Splitting the pixels into bitplanes and putting them back

together is somewhat expensive, and the coding is also fairly slow when implemented in

software.

Another approach that has been suggested uses a 2D differencing step following by

coding the differences using a fixed table of variable-length codes. This type of scheme

works quite well on many 8-bit grayscale images, and is probably simpler to implement

than LZW. But it has a number of disadvantages when used on a wide variety of images.

First, it is not adaptive. This makes a big difference when compressing data such as 8-bit

images that have been “sharpened” using one of the standard techniques. Such images

tend to get larger instead of smaller when compressed. Another disadvantage of these

schemes is that they do not do well with a wide range of bit depths. The built-in code

table has to be optimized for a particular bit depth in order to be effective.

Finally, we should mention “lossy” compression schemes. Extensive research has been

done in the area of lossy, or non-information-preserving image compression. These

techniques generally yield much higher compression ratios than can be achieved by fully-

reversible, information-preserving image compression techniques such as PackBits and

LZW. Some disadvantages:  many of the lossy techniques are so computationally

expensive that hardware assists are required. Others are so complicated that most

microcomputer software vendors could not afford either the expense of implementation

or the increase in application object code size. Yet others sacrifice enough image quality

to make them unsuitable for publishing use.

In spite of these difficulties, we believe that there will one day be a standardized lossy

compression scheme for full color images that will be usable for publishing applications

on microcomputers. An International Standards Organization group, ISO/IEC/JTC1/SC2/

WG8, in cooperation with CCITT Study Group VIII, is hard at work on a scheme that

might be appropriate. We expect that a future revision of TIFF will incorporate this

scheme once it is finalized, if it turns out to satisfy the needs of desktop publishers and

others in the microcomputer community. This will augment, not replace, LZW as an

approved TIFF compression scheme. LZW will very likely remain the scheme of choice

for Palette color images, and perhaps 4-bit grayscale images, and may well overtake

CCITT 1D and PackBits for bilevel images.

Future LZW Extensions

Some images compress better using LZW coding if they are first subjected to a process

wherein each pixel value is replaced by the difference between the pixel and the preced-
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ing pixel. Performing this differencing in two dimensions helps some images even more.

However, many images do not compress better with this extra preprocessing, and for a

significant number of images, the compression ratio is actually worse. We are therefore

not making differencing an integral part of the TIFF LZW compression scheme.

But all TIFF readers that read LZW files must pay attention to the Predictor tag. If it is 1,

which is the default case, LZW decompression may proceed safely. If it is not 1, and the

reader does not recognize the specified prediction scheme, the reader should give up. See

the Differencing Predictor section.

Acknowledgments

The original LZW reference has already been given. The use of ClearCode as a technique

to handle overflow was borrowed from the compression scheme used by the Graphics

Interchange Format (GIF), a small-color-paint-image-file format used by CompuServe

that also is an adaptation of the LZW technique.



66

TIFF 6.0 Draft 1—February 14, 1992

Section 17: Differencing Predictor

We now define a Predictor that greatly improves compression ratios for some images.

Predictor

Tag = 317 (13D.H)

Type = SHORT

N = 1

A predictor is a mathematical operator that is applied to the image data before the

encoding scheme is applied. Currently this tag is used only with LZW (Compression=5)

encoding, since LZW is probably the only TIFF encoding scheme that benefits signifi-

cantly from a predictor step. See the LZW Compression section.

The possible values are:

1 = No prediction scheme used before coding.

2 = Horizontal differencing.

Default is 1.

The algorithm

The idea is to make use of the fact that many continuous tone images rarely vary much in

pixel value from one pixel to the next. In such images, if we replace the pixel values by

differences between consecutive pixels, many of the differences should be 0, plus or

minus 1, and so on. This reduces the apparent information content, and thus allows LZW

to encode the data more compactly.

Assuming 8-bit grayscale pixels for the moment, a basic C implementation might look

something like this:

char image[ ][ ];

int row, col;

/* take horizontal differences:

 */

for (row = 0; row < nrows; row++)

for (col = ncols - 1; col >= 1; col--)

image[row][col] -= image[row][col-1];

If we don’t have 8-bit components, we need to work a little harder, so that we can make

better use of the architecture of most CPUs. Suppose we have 4-bit components, packed

two to a byte, in normal TIFF uncompressed (i.e., Compression=1) fashion. In order to

find differences, we want to first expand each 4-bit component into an 8-bit byte, so that

we have one component per byte, low-order justified. We then perform the above

horizontal differencing. Once the differencing has been completed, we then repack the 4-
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bit differences two to a byte, in normal TIFF uncompressed fashion.

If the components are greater than 8 bits deep, expanding the components into 16-bit

words instead of 8-bit bytes seems like the best way to perform the subtraction on most

computers.

Note that we have not lost any data up to this point, nor will we lose any data later on. It

might at first seem that our differencing might turn 8-bit components into 9-bit differ-

ences, 4-bit components into 5-bit differences, and so on. But it turns out that we can

completely ignore the “overflow” bits caused by subtracting a larger number from a

smaller number and still reverse the process without error. Normal twos complement

arithmetic does just what we want. Try an example by hand if you need more convincing.

Up to this point we have implicitly assumed that we are compressing bilevel or grayscale

images. An additional consideration arises in the case of color images.

If PlanarConfiguration is 2, there is no problem. Differencing proceeds the same way as it

would for grayscale data.

If PlanarConfiguration is 1, however, things get a little trickier. If we didn’t do anything

special, we would be subtracting red component values from green component values,

green component values from blue component values, and blue component values from

red component values, which would not give the LZW coding stage much redundancy to

work with. So we will do our horizontal differences with an offset of SamplesPerPixel (3,

in the RGB case). In other words, we will subtract red from red, green from green, and

blue from blue. The LZW coding stage is identical to the SamplesPerPixel=1 case. We

require that BitsPerSample be the same for all 3 components.

Results and guidelines

LZW without differencing works well for 1-bit images, 4-bit grayscale images, and

synthetic color images. But natural 24-bit color images and some 8-bit grayscale images

do much better with differencing. For example, our 24-bit natural test images hardly

compressed at all using “plain” LZW: the average compression ratio was 1.04 to 1. The

average compression ratio with horizontal differencing was 1.40 to 1. (A compression

ratio of 1.40 to 1 means that if the uncompressed image is 1.40MB in size, the com-

pressed version is 1MB in size.)

Although the combination of LZW coding with horizontal differencing does not result in

any loss of data, it may be worthwhile in some situations to give up some information by

removing as much noise as possible from the image data before doing the differencing,

especially with 8-bit components. The simplest way to get rid of noise is to mask off one

or two low-order bits of each 8-bit component. On our 24-bit test images, LZW with

horizontal differencing yielded an average compression ratio of 1.4 to 1. When the low-

order bit was masked from each component, the compression ratio climbed to 1.8 to 1;

the compression ratio was 2.4 to 1 when masking two bits, and 3.4 to 1 when masking

three bits. Of course, the more you mask, the more you risk losing useful information

along with the noise. We encourage you to experiment to find the best compromise for

your device. For some applications it may be useful to let the user make the final deci-

sion.

Interestingly, most of our RGB images compressed slightly better using
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PlanarConfiguration=1. One might think that compressing the red, green, and blue

difference planes separately (PlanarConfiguration=2) might give better compression

results than mixing the differences together before compressing (PlanarConfiguration=1),

but this does not appear to be the case.

Incidentally, we tried taking both horizontal and vertical differences, but the extra

complexity of two-dimensional differencing did not appear to pay off for most of our test

images. About one third of the images compressed slightly better with two-dimensional

differencing, about one third compressed slightly worse, and the rest were about the

same.
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Section 18: TIFF Tiles

Introduction

Motivation

This document describes how to organize your image into tiles instead of strips.

For low to medium resolution images, the current TIFF method of breaking the image

into strips is adequate. But larger images can be accessed more efficiently—and compres-

sion tends to work better—if the image is broken into roughly square tiles instead of

horizontally wide but vertically narrow strips.

Relationship to existing tags

When the new tiling tags are used, they replace StripOffsets, StripByteCounts, and

RowsPerStrip. Use of tiles will therefore cause older TIFF readers to give up, since they

will have no way of knowing where the image data is, nor how it is organized. Do not

use both strip-oriented and tile-oriented tags in the same TIFF file, in a futile quest for

backward compatibility. It’s a nice thought, and could almost work with uncompressed

data; but even in this case, the potential for disaster makes it a bad choice.

We do not anticipate that StripOffsets, StripByteCounts, and RowsPerStrip will become

obsolete anytime soon, if ever. Tiling is an optional TIFF feature that will likely be used

only by some applications that create very large images.

Padding

The tile size is defined by TileWidth and TileLength. All of the tiles in an image are the

same size; that is, they have the same pixel dimensions.

Boundary tiles are padded out to the tile boundaries. For example, if the TileWidth is 64

and the ImageWidth is 129, then the image is 3 tiles wide, and 63 pixels of padding must

be added to fill out the rightmost column of tiles. The same holds for TileLength and

ImageLength. It doesn’t really matter what value is used for padding, since good TIFF

readers display only the pixels defined by ImageWidth and ImageLength, and ignore any

padded pixels. Some compression schemes work best if the padding is accomplished by

replicating the last column and last row, instead of padding with 0’s.

The price for padding the image out to tile boundaries is that some space is wasted. But

compression generally shrinks the padded areas to almost nothing. Even if you don’t

compress, remember that tiling is intended for large images. Large images have lots of

comparatively small tiles, so that the percentage of wasted space will be very small,

generally on the order of a few percent or less.

The advantages of padding the image out to tile boundaries are that implementations can

be simpler and faster, and that it is more compatible with certain tile-oriented compres-

sion schemes, such as the emerging JPEG standard.

Tiles are compressed individually, just like strips. That is, each row of data in a tile is

treated as a separate “scanline” when compressing. Compression includes any padded

areas of the rightmost and bottom tiles, so that all the tiles in an image are the same size
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when uncompressed.

All of the following fields are required for tiled images:

New Fields

TileWidth

Tag = 322  (142.H)

Type = SHORT or LONG

N = 1

The tile width, in pixels.  That is, the number of columns in each tile.

Assuming integer arithmetic, three computed values that are useful in the following field

descriptions are:

TILESACROSS = (ImageWidth + TileWidth - 1) / TileWidth

TILESDOWN = (ImageLength + TileLength - 1) / TileLength

TILESPERIMAGE = TILESACROSS * TILESDOWN

These computed values are not TIFF fields; they are simply values which are determined

by the ImageWidth, TileWidth, ImageLength, and TileLength fields.

Thus, TileWidth and ImageWidth together tell us the number of tiles that span the width

of the image (TILESACROSS). TileLength and ImageLength together tell us the number

of tiles that span the length of the image (TILESDOWN).

We recommend choosing TileWidth and TileLength such that the resulting tiles are about

4K to 32K bytes, before compression. This seems to be a reasonable value for most

applications and compression schemes.

TileWidth must be a multiple of 16. This restriction improves performance in some

graphics environments, and enhances compatibility with certain compression schemes

such as the emerging JPEG standard.

Tiles need not be square.

Note that ImageWidth can be less than TileWidth, although this means that either your

tiles are too large or that you are using tiling on really small images, neither of which is

recommended. The same observation holds for ImageLength and TileLength.

No default. See also TileLength, TileOffsets, TileByteCounts.

TileLength

Tag = 323  (143.H)

Type = SHORT or LONG

N = 1

The tile length (height) in pixels. That is, the number of rows (sometimes described as

“scan lines”) in each tile. TileLength must be a multiple of 16, which enhances compat-

ibility with certain compression schemes such as the emerging JPEG standard.

No default. See also TileWidth, TileOffsets, TileByteCounts.

TileOffsets

Tag = 324  (144.H)
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Type = LONG

N = TILESPERIMAGE for PlanarConfiguration = 1

= SamplesPerPixel * TILESPERIMAGE for PlanarConfiguration = 2

For each tile, the byte offset of that tile, as compressed and stored on disk. The offset is

specified with respect to the beginning of the TIFF file. Note that this implies that each

tile has a location independent of the locations of other tiles.

The offsets are ordered left-to-right, top-to-bottom. For PlanarConfiguration = 2, the

offsets for the first component plane are stored first, followed by all the offsets for the

second component plane, and so on.

No default. See also TileWidth, TileLength, TileByteCounts.

TileByteCounts

Tag = 325  (145.H)

Type = SHORT or LONG

N = TILESPERIMAGE for PlanarConfiguration = 1

= SamplesPerPixel * TILESPERIMAGE for PlanarConfiguration = 2

For each tile, the number of (compressed) bytes in that tile.

See TileOffsets for a description of how the byte counts are ordered.

No default. See also TileWidth, TileLength, TileOffsets.
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Section 19: CMYK Images

Motivation

This document describes how to store separated (usually CMYK) image data in a TIFF

file.

In a separated image, each pixel consists of N components or components. Each compo-

nent represents the amount of a particular ink that is to be used to represent the image at

that location, typically using a halftoning technique.

For example, in a CMYK image, each pixel consists of 4 components. Each component

represents the amount of cyan, magenta, yellow, or black process ink that is to be used to

represent the image at that location.

The fields described in this appendix can be used for more than simple 4-color process

(CMYK) printing. They can also be used for describing an image made up of more than 4

inks, such as a cyan, magenta, yellow, red, green, blue, and black ink image. Such an

image is sometimes called a high-fidelity image, and has the advantage of a wider printed

color gamut.

Since separated images are quite device-specific, and restricted to color prepress usage,

they should not be used for general image data interchange. Separated images are to be

used only for prepress applications in which the imagesetter, paper, ink, and printing

press characteristics are known by the creator of the separated image.

Note: there is no single method of converting RGB data to CMYK data and back. In a

perfect world, something close to cyan = 255-red, magenta = 255-green, and yellow =

255-blue should work; but characteristics of printing inks and printing presses, econom-

ics, and the fact the meaning of RGB itself depends on other parameters combine to spoil

this inherent simplicity.

Requirements

In addition to the normal Baseline TIFF requirements, a separated TIFF file must have

the following characteristics:

SamplesPerPixel = N.  SHORT.  The number of inks. (For example, N=4 for CMYK,

since we have one component each for cyan, magenta, yellow, and black.

BitsPerSample = 8,8,8,8 (for CMYK).  SHORT.  For now, only 8-bit components are

recommended. The value “8” is repeated SamplesPerPixel times.

PlanarConfiguration = 1 or 2.  SHORT.

Compression = 1.  SHORT. ‘1’ means no compression (see the Compression tag

discussion in the main body of the TIFF specification).

PhotometricInterpretation = 5 (Separated).  SHORT.  The components represent

desired percent dot coverage of each ink, where the larger component values represent a

higher percentage of ink dot coverage, and smaller values represent less ink.
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And we have some new tags, all of which are optional. But note that InkSet has a default

of 1, which is also the only currently defined value. The reader must check to see that the

value for InkSet is indeed what he is expecting, since we may add other types of sepa-

rated images some day.

InkSet

Tag = 332 (14C.H)

Type = SHORT

N = 1

The set of inks that are used in a separated (PhotometricInterpretation=5) image.

1 = CMYK. For each pixel, each of the components represents the quantity for the

respective ink. The order of the components is cyan, magenta, yellow, black.

2 = not CMYK. See the InkNames tag for a description of the inks to be used.

Default is 1 (CMYK).

InkNames

Tag = 333 (14D.H)

Type = ASCII

N = total number of characters in all the ink name strings, including the zeros

The name of each ink that is used in a separated (PhotometricInterpretation=5) image,

written as a list of concatenated, zero-terminated ASCII strings. The number of strings

must be equal to SamplesPerPixel.

See also InkSet, above.

No default.

DotRange

Tag = 336 (150.H)

Type = BYTE or SHORT

N = 2, or 2*SamplesPerPixel

The component values that are to correspond to a 0% dot and 100% dot. DotRange[0]

corresponds to a 0% dot, and DotRange[1] corresponds to a 100% dot.

If a DotRange pair is included for each component, the values for each component are

stored together, so that the pair for Cyan would be first, followed by the pair for Magenta,

and so on. Use of multiple dot ranges is, however, strongly discouraged for now, in the

interests of simplicity and compatibility with ANSI IT8 standards.

A number of prepress systems like to keep some “headroom” and “footroom” for various

purposes on both ends of the range. What exactly to do with components that are less

than the 0% aim point or greater than the 100% aim point is not specified, and is applica-

tion-dependent.

It is strongly recommended that the writer not attempt to use this field to reverse the

sense of the pixel values. That is, DotRange[0] should be less than DotRange[1]. And

both are, of course, within the range [0, (2**BitsPerSample) - 1]. There is probably no
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good technical reason for this recommendation, as long as software engineers are careful

in their implementations; but if something CAN go wrong, it usually will.

Note that a writer can include a different range for each separation if desired, in which

case N is 2*SamplesPerPixel, instead of N=2.

Default: a component value of 0 corresponds to a 0% dot, and a component value of 255

(assuming 8-bit pixels) corresponds to a 100% dot. That is, DotRange[0] = 0 and

DotRange[1] = (2**BitsPerSample) - 1.

TargetPrinter

Tag = 337 (151.H)

Type = ASCII

N = any

An arbitrary text string containing a description of the printing environment for which

this separation was intended.

History

This Section has been expanded from earlier drafts, with the addition of the InkSet,

InkNames, DotRange, TargetPrinter, and a new compression scheme, but is neverthe-

less backward-compatible with the earlier draft versions.

Future enhancements: definition of the characterization information, so that the CMYK

data can be retargeted to a different printing environment, and so that display on a CRT

or proofing device can more accurately represent the color. ANSI IT8 is working on such

a proposal.

This completes the separated image section.
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Section 20: The HalftoneHints Tag

Please direct comments to:

 Ed Beeman

Hewlett Packard

esb@hpgrla.gr.hp.com

Importance of Highlight & Shadow placement

The single most easily recognized failing of continuous tone images is incorrect place-

ment of the highlight and shadow. It is critical that a halftone process be capable of

printing the lightest areas of the image as the smallest halftone spot capable of the output

device at the specified printer resolution and screen ruling. Specular highlights (small

ultra-white areas) should be printable as paper only. Similarly so for the shadow areas.

Consistency in highlight and shadow placement allows the user to obtain predictable

results on a wide variety of halftone output devices. Proper implementation of this tag

will provide a significant step toward device independent imaging, such that low cost

printers may to be used as effective proofing devices for images which will later be

halftoned on a high resolution imagesetter.

The HalftoneHints Tag

HalftoneHints

Tag = 321 (141.H)

Type = SHORT

N = 2

The purpose of the HalftoneHints tag is to convey to the halftone function the range of

gray levels within a colorimetrically specified image which should retain tonal detail. The

tag contains two values of sixteen bits each, and therefore is contained wholly within the

tag itself; no offset is required. The first word specifies the highlight gray level which

should be halftoned at the lightest printable tint of the final output device. The second

word specifies the shadow gray level which should be halftoned at the darkest printable

tint of the final output device. Portions of the image which are whiter than the highlight

gray level will quickly, if not immediately, fade to specular highlights. There is no

default value specified, since the highlight and shadow gray levels are a function of the

subject matter of a particular image.

Appropriate values may be derived algorithmically, or may be specified by the user,

either directly or indirectly.

The HalftoneHints tag as defined here defines an achromatic function. It can be used just

as effectively with color images as with monochrome images. When used with opponent

color spaces such as CIE L*a*b* or YCbCr, it refers to the achromatic component only;

L* in the case of CIELab, and Y in the case of YCbCr. When used with tri-stimulus

spaces such as RGB, it suggests to retain tonal detail for all colors with an NTSC gray
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component within the bounds of the R=G=B=Highlight to R=G=B=Shadow range.

Comments for TIFF writers:

TIFF writers are encouraged to include the HalftoneHints tag in all color or grayscale

images where BitsPerSample >1. Although no default value is specified, prior to the

introduction of this tag it has been common practice to implicitly specify the highlight

and shadow gray levels as 1 and 2**BitsperSample-2 and manipulate the image data to

this definition. There are some disadvantages to this technique, and it is not feasible for a

fixed gamut colorimetric image type. Appropriate values may be derived algorithmically,

or may be specified by the user, either directly or indirectly. Automatic algorithms exist

for analyzing the histogram of the achromatic intensity of an image and defining the

minimum and maximum values as the highlight and shadow settings such that tonal detail

is retained throughout the image. This kind of algorithm may try to impose a highlight or

shadow where none really exists in the image, which may require user controls to

override the automatic setting.

It should be noted that the choice of the highlight and shadow values is some what output

dependent. For instance, in situations where the dynamic range of the output medium is

very limited (as in newsprint and to a lesser degree in laser output), it may be desirable

for the user to clip some of the lightest or darkest tones in order to avoid the reduced

contrast resulting from compressing the tone of the entire image. Different settings might

be chosen for 150 line halftone printed on coated stock. Keep in mind these values may

be adjusted later (which is likely to not be possible unless the image is stored as a

colorimetric fixed full gamut image), and that more sophisticated page-layout applica-

tions may be capable of presenting a user interface to re-make these decisions at a point

where the halftone process is well understood.

It should be noted that although CCDs are linear intensity detectors, TIFF writers may

choose to manipulate the image to store gamma compensated data. Gamma compensated

data is more efficient at encoding an image than linear intensity data because it requires

fewer BitsPerPixel to eliminate banding in the darker tones. It also has the advantage of

being closer to the tone response of the display or printer, and therefore less likely to

produce poor results from applications which are not rigorous about their treatment of

images. Be aware that the PhotometricInterpretation value of 0 or 1 (grayscale) implies

linear data, since no gamma is specified. The PhotometricInterpretation value of 2 (RGB

data) specifies the NTSC gamma of 2.2 as a default. If data is written as something other

than the default, then a GrayResponseCurve tag or a TransferFunction tag must be

present to define the deviation. For grayscale data, be sure that the densities in the

GrayResponseCurve are consistent with the PhotometricInterpretation tag and the

HalftoneHints tag.

Comments for TIFF readers:

TIFF readers which will be sending a grayscale image to a halftone output device,

whether it is a binary laser printer, or a PostScript imagesetter, should make an effort to

maintain the highlight and shadow placement. This requires two steps. First, determine

the highlight and shadow gray level of a particular image. Second, communicate that
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information to the halftone engine.

To determine the highlight and shadow gray levels, begin by looking for a HalftoneHints

tag. If it exists, it takes precedence, and the first word represents the gray level of the

highlight, and the second word represents the gray level of the shadow. If the image is a

colorimetric image (i.e. it has a GrayResponseCurve tag or a TransferFunction tag), but

does not contain a HalftoneHints tag, then the gamut mapping techniques described

earlier should be used to determine the highlight and shadow values. If neither of these

conditions are true, then the file should be treated as if a HalftoneHints tag had indicated

a highlight at gray level 1, and a shadow at gray level 2**BitsPerPixel-2 (or vice-versa

depending on the PhotometricInterpretation tag). Once the highlight and shadow gray

levels have been determined, the next step is to communicate this information to the

halftone module. The halftone module may exist within the same application as the TIFF

reader, it may exist within a separate printer driver, or it may exist within the Raster

Image Processor (RIP) of the printer itself. Whether the halftone process is a simple

dither pattern, or a general purpose spot function, it has some gray level at which the

lightest printable tint will be rendered. The HalftoneHint concept is best implemented in

an environment where this lightest printable tint is easily and consistently specified.

There are several ways in which an application can communicate the highlight and

shadow to the halftone function. Some environments may allow the application to pass

the highlight and shadow to the halftone module explicitly along with the image. This is

the best approach, but many environments do not yet provide this capability. Other

environments may provide fixed gray levels at which the highlight and shadow will be

rendered. For these cases, the application should build a tone map which matches the

highlight and shadow specified in the image to the highlight and shadow gray level of the

halftone module. This approach requires more work by the application software, but will

still provide excellent results. Some environments will not have any consistent concept of

highlight and shadow at all. In these environments, the best an application can do is

characterize each of the supported printers and save the observed highlight and shadow

gray levels. The application can then use these values to achieve the desired results,

provided that the environment doesn’t change.

Once the highlight and shadow areas are selected, care should be taken to appropriately

map intermediate gray levels to those expected by the halftone engine, which may or may

not be linear Reflectance. It should be noted that although CCDs are linear intensity

detectors, and many TIFF files are stored as linear intensity, most output devices require

significant tone compensation (sometimes called gamma correction) to correctly display

or print linear data. Be aware that the PhotometricInterpretation value of 0, 1 implies

linear data, since no gamma is specified. The PhotometricInterpretation value of 2 (RGB

data) specifies the NTSC gamma of 2.2 as a default. If a GrayResponseCurve tag or a

TransferFunction tag is present it may define something other than the default.

Some background on the halftone process:

In order to obtain the best results when printing a continuous tone raster image, it is

seldom desirable to simply reproduce the tones of the original on the printed page. Most

often there is some gamut mapping required. Often this is because the tonal range of the
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original extends beyond the tonal range of the output medium. In some cases the tone

range of the original is within the gamut of the output medium , but it may be more

pleasing to expand the tone of the image to fill the range of the output. Given that the

tone of the original is to be adjusted, there is a whole range of possibilities for the level of

sophistication which may be undertaken by a software application.

Printing monochrome output is far less sophisticated than printing color output. For

monochrome output the first priority is to control the placement of the highlight and the

shadow. Ideally, a quality halftone will have sufficient levels of gray such that a standard

observer is not able to distinguish the interface between any two adjacent levels of gray.

In practice, however, there is often a significant step between the tone of the paper and

the tone of the lightest printable tint. Although usually less severe, the problem is similar

between solid ink and the darkest printable tint. Since the dynamic range between the

lightest printable tint and the darkest printable tint is usually less than one would like, it is

common to maximize the tone of the image within these bounds. Not all images will have

a highlight (an area of the image which is desirable to print as light as possible while still

retaining tonal detail), but if one exists, it should be carefully controlled to print at the

lightest printable tint of the output medium. Similarly the darkest areas of the image

which should retain tonal detail should be printed as the darkest printable tint of the

output medium. Tones lighter or darker than these may be clipped at the limits of the

paper and ink. Satisfactory results may be obtained in monochrome work by doing

nothing more than a perceptually linear mapping of the image between these rigorously

controlled endpoints. This level of sophistication is sufficient for many mid-range

applications, although the results will often appear somewhat flatter, i.e. lower in

contrast, than may be desired.

The next step is to increase contrast slightly in the tonal range of the image which

contains the most important subject matter. To perform this step well requires consider-

ably more information about the image and about the press. In order to know where to

add contrast, the algorithm must have access to first the keyness of the image; the tone

range which the user considers most important. In order to know how much contrast to

add, the algorithm must have access to the absolute tone of the original, and the dynamic

range of the output device so that it may calculate the amount of tone compression to

which the image is actually subjected.

Most images are called normal key. The important subject areas of a normal key image

are in the midtones. These images do well when a so-called “sympathetic curve” is

applied, which increases the contrast in midtones slightly, at the expense of the contrast

in the lighter and darker tones. White china on a white tablecloth is an example of a high

key image. High key images benefit from higher contrast in lighter tones, with less

contrast needed in the midtones and darker tones. Low key images have important subject

matter in the darker tones, and benefit from increasing the contrast in the darker tones.

Specifying the keyness of an image might be attempted by automatic techniques, but will

likely be failure prone without user input. For example, a photo of a bride in a white

wedding dress may be a high key image if you are selling wedding dresses, but may be a

normal key image if you are the parents of the bride, and are more interested in her smile.

Sophisticated color reproduction makes use of all of these principles, and then applies

them in three dimensions. The mapping of the highlight and shadow becomes only one
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small, albeit critical, portion of the total issue of mapping colors which are too saturated

for the output medium. Here again automatic techniques may be employed as a first pass,

with the user becoming involved in the clip/compress mapping decision. The

HalftoneHints tag is still useful in communicating which portions of the intensity of the

image must be retained, and which may be clipped. Again, a sophisticated application

may override these settings if later user input is received.
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Section 21: Associated Alpha

Handling

Please direct comments to:

Sam Leffler

Silicon Graphics

sam@sgi.com

Introduction.

A common technique in computer graphics is to assemble an image from one or more

elements that are rendered separately. When elements are combined using compositing

techniques, matte or coverage information must be present for each pixel in order to

create a properly anti-aliased accumulation of the full image [Porter84]. This matting

information is an example of additional per-pixel data that must be maintained with an

image. This document describes how to use the tag to store the requisite matting informa-

tion, commonly called the associated alpha, or just alpha. This scheme enables efficient

manipulation of image data during compositing operations.

Images with matting information are stored in their natural format, but with an additional

component per pixel. The tag, is included with the image to indicate that an extra

component of each pixel contains associated alpha data. In addition, when associated

alpha data are included with RGB data, the RGB components must be stored pre-

multiplied by the associated alpha component and component values in the range

[0,2**BitsPerSample-1] are implicitly mapped onto the interval [0,1]. That is, for each

pixel (r,g,b) and opacity A, where r, g, b, and A are in the range [0,1], (A*r,A*g,A*b,A)

must be stored in the file. If A is zero, then the color components should be interpreted as

zero. Storing data in this pre-multiplied format, allows compositing operations to be

implemented most efficiently. In addition, storing pre-multiplied data makes it possible to

specify colors with components outside the normal [0,1] interval. The latter is useful for

defining certain operations that effect only the luminescence [Porter84].

Tags

ExtraSamples

Tag = 338 (152.H)

Type = SHORT

N = 1

This tag must have a value of 1 (Associated Alpha data with pre-multiplied color

components). The associated alpha data stored in SamplesPerPixel-1 of each pixel

contains the opacity of that pixel and the color information is pre-multiplied by alpha.
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Comments

Associated alpha data is just another component added to each pixel. Thus, for example,

its size is defined by the value of the BitsPerSample tag.

Note that since data is stored with RGB components already multiplied by alpha, naive

applications that want to display an RGBA image on a display can do so simply by

displaying the RGB component values. This works because it is effectively the same as

merging the image over a black background. That is, to merge one image over another,

the color of resultant pixels are calculated as:

C
r
  =  C

over
 * A

over
  + C

under
 * (1–A

over
)

Since the “under image” is a black background, this equation reduces to

C
r
  =  C

over
 * A

over

which is exactly the pre-multiplied color; i.e. what is stored in the image.

On the other hand, to print a RGBA image, one must composite the image over a suitable

background page color. For a white background, this is easily done by adding 1 - A to

each color component. For an arbitrary background color C
back

, the printed color of each

pixel is

C
print

  =  C
image

 + C
back

 * (1–A
image

)

(since C
image

 is pre-multiplied).

Since the  tag is independent of other tags, this scheme permits alpha information to be

stored in whatever organization is appropriate. In particular, components can be stored

packed (PlanarConfiguration=1); this is important for good I/O performance and for good

memory access performance on machines that are sensitive to data locality. Note,

however, that if this scheme is used, that TIFF readers must not derive the

SamplesPerPixel from the value of the PhotometricInterpretation tag; e.g. if RGB, that

SamplesPerPixel is 3.

In addition to being independent of data storage-related tags, the  tag is also independent

of the PhotometricInterpretation tag. This means, for example, that it is easy to use this

tag to specify greyscale data and associated matte information. Note that a Palette image

with associated alpha will not have the colormap indices pre-multiplied, but rather the

RGB colormap values will be pre-multiplied.

Unassociated Alpha and Transparency Masks

Some image manipulation applications support notions of transparency masks and soft-

edge masks. The associated alpha information described in this Section is different from

this unassociated alpha information in many ways, most importantly:

1. Associated alpha describes opacity or coverage at each pixel, while clipping-related

alpha information describes a boolean relationship. That is, associated alpha can

specify fractional coverage at a pixel, while masks specify either 0 or 100 percent

coverage.

2. Once defined, associated alpha is not intended to be removed or edited, except as a

result of compositing the image; it is an integral part of an image. Unassociated alpha,

on the other hand, is designed as an ancillary piece of information.
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Section 22: Data Sample Format

Please direct comments to:

Nancy Cam

nance@sgi.com

Introduction

TIFF implicitly types all data samples as unsigned integer values. Certain applications,

however, require the ability to store image related data in other formats such as floating

point. This appendix presents a scheme for describing a variety of data sample formats.

New Tags

SampleFormat

Tag = 339 (153.H)

Type = SHORT

N = SamplesPerPixel

This tag specifies how to interpret each data sample in a pixel. Possible values are:

1 unsigned integer data

2 two’s complement signed integer data

3 IEEE floating point data [IEEE]

4 undefined data format

Note that the SampleFormat tag does not specify the size of data samples; this is still

done by the BitsPerSample tag.

A tag value of “undefined” is a statement by the writer that it did not know how to

interpret the data samples; for example, if it was copying an existing image. A reader

would typically treat an image with “undefined” data as if the tag were not present; i.e. as

unsigned integer data.

Default is 1, unsigned integer data.

SMinSampleValue

Tag = 340 (154.H)

Type = the field type that best matches the sample data

N = SamplesPerPixel

This new tag specifies the minimum sample value. Note that a value should be given for

each data sample. That is, if the image has 3 SamplesPerPixel, 3 values must be speci-

fied.

The default for SMinSampleValue and SMaxSampleValue is the full range of the data

type.
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SMaxSampleValue

Tag = 341 (155.H)

Type = the field type that best matches the sample data

N = SamplesPerPixel

This new tag specifies the maximum sample value.

Comments

The introduction of the SampleFormat tag allows for more general imaging (such as

image processing) applications to employ TIFF as a valid file format. These tags are not

part of the Baseline TIFF requirements. They are defined in this specification as a means

for providing support for a broader set of imaging applications, specifically, those

involving typed image data.

The importance of tags such as SMinSampleValue and SMaxSampleValue become more

meaningful when image data is typed. The presence of these tags makes it possible for

readers to assume that data samples are bound to the range [SMinSampleValue,

SMaxSampleValue] without scanning the image data.

References

[IEEE] “IEEE Standard 754 for Binary Floating-point Arithmetic”.
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Section 23: RGB Image

Colorimetry Information

Please direct comments to:

Dan or Chris Sears

sears@netcom.com

Introduction

Color printers, displays and scanners continue to improvein quality and availability while

they drop in price. Now the problem is to display color images so thatthey appear to be

identical on different hardware.

The key to reproducing the same color on different devicesis to use the CIE 1931 XYZ

color matching functions,the international standard for color comparison.  UsingCIE

XYZ, an image’s colorimetry information can fullydescribe its color interpretation.  The

approach takenhere is essentially calibrated RGB.

Using the tags described below tags, an application candisplay the image on different

hardware and achieve colorimetricallyidentical results.  The process of using this

colorimetryinformation for displaying an image is straightforwardon a color monitor but

it is more complex for colorprinters.  Results will be limited by the color gamutand other

characteristics of the display or printingdevice.

The following tags describe the image colorimetry informationof a TIFF image:

WhitePoint chromaticity of thewhite point of the image

PrimaryChromaticities chromaticities ofthe primaries of the image

TransferFunction transfer function forthe pixel data

ReferenceBlackWhite pixel component headroomand footroom parameters

Both the TransferFunction and ReferenceBlackWhite tagshave defaults based on industry

standards.  An imagehas a colorimetric interpretation if and only if boththe WhitePoint

and PrimaryChromaticities tags are present. An image without these colorimetry tags will

be displayedin an application and hardware dependent manner.

Note: in the definitions below, BitsPerSample is usedas if it were a single number when

in fact it isan array of SamplesPerPixel numbers.  The elements ofthis array may not

always be equal, for example: 5/6/516-bit pixels.  In the case of unequal

BitsPerSamplevalues, the definitions below can be extended in a straightforwardmanner.

The colorimetry information tag definitions have the followingdifferences with TIFF 5.0:

• removed the use of image colorimetry defaults

• renamed the ColorResponseCurves tag as TransferFunction

• optionally allowed a single TransferFunctiontable to describe all three channels

• described the use of the TransferFunctiontag for YCbCr, Palette, MinIsWhite and
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MinIsBlackPhotometricInterpretation types

• added the ReferenceBlackWhite tag

• tag sizes don’t depend on SamplesPerPixel

Tag Definitions

WhitePoint

Tag = 318 (13E hex)

Type = RATIONAL

N = 2

The chromaticityof the white point of the image.  This is the chromaticitywhen each of

the primaries has its ReferenceWhite value. The value is described using the 1931 CIE xy

chromaticitydiagram and only the chromaticity is specified.  Thisvalue can correspond to

the chromaticity of the alignmentwhite of a monitor, the filter set and light

sourcecombination of a scanner or the imaging model of arendering package.  The

ordering is white[x], white[y].

For example, the CIE Standard Illuminant D65 used byCCIR Recommendation 709 and

Kodak PhotoYCC is:

3127/10000,3290/10000

No default.

PrimaryChromaticities

Tag =319 (13F hex)

Type = RATIONAL

N = 6

The chromaticities of the primaries of the image.  Thisis the chromaticity for each of the

primaries when ithas its ReferenceWhite value and the other primarieshave their

ReferenceBlack values.  These values are describedusing the 1931 CIE xy chromaticity

diagram and onlythe chromaticities are specified.  These values can correspondto the

chromaticities of the phosphors of a monitor,the filter set and light source combination of

a scanneror the imaging model of a rendering package.  The orderingis red[x], red[y],

green[x], green[y], blue[x], blue[y].

For example the CCIR Recommendation 709 primaries, alsoused by PhotoYCC, are:

640/1000,330/1000,

300/1000, 600/1000,

150/1000,  60/1000

No default.

TransferFunction

Tag =301 (12D hex)

Type = SHORT
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N = {1 or 3} * (1 << BitsPerSample)

Describes a transferfunction for the image in tabular style.  Pixel componentscan be

gamma compensated, companded, non-uniformly quantizedor coded in some other way.

The TransferFunction mapsthe pixel components from a non-linear BitsPerSample (e.g.8-

bit) form into a 16-bit linear form without a perceptibleloss of accuracy.

If N = 1 << BitsPerSample, the transfer function isthe same for each channel and all

channels share asingle table.  Of course, this assumes that each channelhas the same

BitsPerChannel value.

If N = 3 * (1 << BitsPerSample), there are three tablesand the ordering is the same as for

pixel componentsof the PhotometricInterpretation tag.  These tables areseparate and not

interleaved.  For example, with RGBimages all red entries come first, followed by all

greenentries, followed by all blue entries.

The length of each component table is 1 << BitsPerSample. The width of each entry is 16

bits as implied bythe type SHORT.  The value 0 represents the minimumintensity and

65535 represents the maximum intensity. The values [0, 0, 0] represent black and [65535,

65535,65535] represent white.

The TransferFunction can be applied to images with aPhotometricInterpretation value of

RGB, Palette, YCbCr,MinIsWhite and MinIsBlack.  The TransferFunction is notused

with other PhotometricInterpretation types.

For RGB PhotometricInterpretation, ReferenceBlackWhite expandsthe coding range and

the TransferFunction tables decompandthe RGB value.  The WhitePoint and

PrimaryChromaticitiesfurther describe the RGB colorimetry.

For Palette PhotometricInterpretation, the Colormap mapsthe pixel into three 16-bit

values that when scaledto BitsPerSample-bits serve as indices into the

TransferFunctiontables which decompand the RGB value.  The WhitePointand

PrimaryChromaticities further describe the underlyingRGB colorimetry.

A Palette value can be scaled into a TransferFunctionindex by:

index= (value * ((1 << BitsPerSample) - 1)) / 65535L;

A TransferFunction index can be scaled into a Palettevalue by:

value= (index * 65535L) / ((1 << BitsPerSample) - 1);

For YCbCr PhotometricInterpretation, ReferenceBlackWhiteexpands the coding range,

the YCbCrCoefficients describethe decoding matrix to transform YCbCr into RGB

andthe TransferFunction tables decompand the RGB value.The WhitePoint and

PrimaryChromaticities tags provide furtherdescription of the underlying RGB colorim-

etry.

After coding range expansion by ReferenceBlackWhite, RGBvalues may be outside the

domain of the TransferFunction. Also, the display device matrix can transform RGB

valuesinto display device RGB values outside the domain ofthe device.  These values are

handled in an applicationdependent manner.

For RGB images with non-default ReferenceBlackWhite codingrange expansion and for

YCbCr images, the resolutionof the TransferFunction may be insufficient.  As

anillustration, after the YCbCr transformation matrix, thedecoded RGB values must be
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rounded to index into theTransferFunction tables.  Applications needing the

extraaccuracy should interpolate between the elements of theTransferFunction tables.

Cubic spline interpolation isrecommended.

For MinIsWhite and MinIsBlack PhotometricInterpretation,the TransferFunction

decompands the grayscale pixel valueto a linear 16-bit form.  Note that a

TransferFunctionvalue of 0 represents black and 65535 represents whiteregardless of

whether a grayscale image is MinIsWhiteor MinIsBlack.  For example, the zeroth

element of aMinIsWhite TransferFunction table will likely be 65535.  This extensionof

the TransferFunction tag for grayscale images is intendedto replace the

GrayResponseCurve tag.

The TransferFunction does not describe a transfer characteristicoutside of the range for

ReferenceBlackWhite.  For example,the single PhotoYCC TransferFunction table can be

generatedby:

      for (i = 0; (i / 255.0) < 0.018;i++)

table[i]= floor(((4.5 * i) / 255.0) * 65535.0 + 0.5);

for (; i < 256; i++)

table[i]= floor((1.099 * pow(i / 255.0, 0.45)) * 65535
+ 0.5);

An application needing finer precision or the negativelobe that PhotoYCC uses can

identify this table as aspecial case.  It should look at the WhitePoint,

thePrimaryChromaticities, the TransferFunction and the ReferenceBlackWhitetags.  If

they match the PhotoYCC values, the PhotoYCC TransferFunction can be evaluated

analytically.

Default is a single table corresponding to the NTSCstandard gamma value of 2.2.  This

table is used foreach channel.  It can be generated by:

NValues = 1 << BitsPerSample;

for (table[0]= 0, i = 1; i < NValues; i++)

table[i]= floor(pow(i / (NValues - 1.0), 2.2) * 65535
+ 0.5);

ReferenceBlackWhite

Tag =532 (214 hex)

Type = RATIONAL

N = 6

Specifies a pairof headroom and footroom codes for each pixel component. The first

component code within a pair is associatedwith ReferenceBlack and the second is

associated withReferenceWhite.  The ordering of pairs is the same asfor pixel compo-

nents of the PhotometricInterpretation type. ReferenceBlackWhite can be applied to

images with aPhotometricInterpretation value of RGB or YCbCr.

ReferenceBlackWhiteis not used with other PhotometricInterpretation values.

Computer graphics commonly places black and white atthe extremities of the binary

representation of imagedata, for example black at code 0 and white at code255.  In other
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disciplines such as printing, film andvideo there are practical reasons to provide

footroomcodes below ReferenceBlack and headroom codes above ReferenceWhite.

In film applications, they correspond to the densitiesDmax and Dmin.  In video applica-

tions, ReferenceBlackcorresponds to 7.5 IRE and 0 IRE in systems with andwithout setup

respectively and ReferenceWhite correspondsto 100 IRE units.

Using YCbCr and the CCIR Recommendation 601.1 video standardas an example, code

16 represents ReferenceBlack andcode 235 represents ReferenceWhite for the luminance

component,Y.  For the chrominance components, Cb and Cr, code128 represents

ReferenceBlack and code 240 representsReferenceWhite.  With Cb and Cr the

ReferenceWhite valueis used to code reference blue and reference red respectively.

The full range component value is converted from thecode by:

value= (code - ReferenceBlack) * CodingRange

/(ReferenceWhite - ReferenceBlack);

The code is convertedfrom the full range component value by:

code = (value * (ReferenceWhite - ReferenceBlack) / CodingRange)

+ ReferenceBlack;

For RGB imagesand for the Y component of YCbCr images CodingRangeis defined as:

CodingRange = (1 << BitsPerSample) - 1;

For the Cb and Cr components of YCbCr images CodingRangeis defined as:

CodingRange = 127;

For RGB images, in the default special case of no headroomor footroom this conversion

can be skipped because thescaling multiplier equals 1.0 and the value equals thecode.

For YCbCr images, in the case of no headroom or footroomthe conversion for Y can be

skipped since the valueequals the code.  For Cb and Cr, ReferenceBlack muststill be

subtracted from the code.  In the generalcase, the scaling multiplication for the Cb and Cr

componentcodes can be factored into the YCbCr transform matrix.

Useful ReferenceBlackWhite values for YCbCr images are:

[0/1, 255/1,128/1, 255/1, 128/1, 255/1]

no headroom/footroom

[15/1, 235/1, 128/1, 240/1, 128/1, 240/1]

CCIR Recommendation 601.1 headroom/footroom

[0/1, 181883/1000, 156/1, 255/1, 137/1, 232/1]

Kodak PhotoYCC

Useful ReferenceBlackWhitevalues for BitsPerSample = 8,8,8 Class R images are:

[0/1, 255/1,0/1, 255/1, 0/1, 255/1]

no headroom/footroom

[16/1, 235/1, 16/1, 235/1, 16/1, 235/1]

CCIR Recommendation 601.1 headroom/footroom

Default is [0,NV, 0, NV, 0, NV] where NV = (1 << BitsPerSample)- 1.
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Section 24: YC
b
C

r
 Images

Please send any comments to:

Eric Hamilton

C-Cube Microsystems

eric@c3.pla.ca.us

Introduction

Digitizers of video sources that create RGB data are becoming more capable and less

expensive. Class R RGB is adequate for this purpose (see Appendices G and H). How-

ever, for both digital video and image compression applications a color difference color

space is needed. The television industry depends on YC
b
C

r
 for digital video. For image

compression, subsampling the chrominance components allows for greater compression.

Class Y supports these images and applications.

Class Y is based on CCIR Recommendation 601-1, “Encoding Parameters of Digital

Television for Studios.” Class Y also has parameters that allow the description of related

standards such as CCIR Recommendation 709 and technological variations such as

component sample positioning.

YC
b
C

r
 is a distinct PhotometricInterpretation type. RGB pixels are converted to and from

YC
b
C

r
 for storage and display.

Class Y defines the following tags:

YC
b
C

r
Coefficients transformation from RGB to YC

b
C

r

YC
b
C

r
SubSampling subsampling of the chrominance components

YC
b
C

r
Positioningpositioning of chrominance component samples relative to the lumi-

nance samples

In addition, ReferenceBlackWhite, which specifies coding range expansion, is required

by Class Y (see the RGB Colorimetry section).

Class Y YC
b
C

r
 images have three components: Y, the luminance component, and C

b
 and

C
r
, two chrominance components. Class Y uses the international standard notation YC

b
C

r

for color difference component coding. This is often incorrectly called YUV, which

properly applies only to composite coding.

The transformations between YC
b
C

r
 and RGB are linear transformations of un-interpreted

RGB sample data, typically gamma-corrected values. The YC
b
C

r
Coefficients tag de-

scribes the parameters of this transformation.

Another feature of Class Y comes from subsampling the chrominance components. A

Class Y image can be compressed by reducing the spatial resolution of chrominance

components. This takes advantage of the relative insensitivity of the human visual system

to chrominance detail. The YC
b
C

r
SubSampling tag describes the degree of subsampling

which has taken place.

When a Class Y image is subsampled, each C
b
 and C

r
 sample is associated with a group

of luminance samples. The YC
b
C

r
Positioning tag describes the position of the chromi-
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nance component samples relative to the group of luminance samples: centered or

cosited.

Class Y requires use of the ReferenceBlackWhite tag. This tag expands the coding range

by describing the reference black and white values for the different components that

allow headroom and footroom for digital video images. Since the default for

ReferenceBlackWhite is inappropriate for Class Y, it must be used explicitly.

At first sight it may seem that the information conveyed by Class Y and the RGB

Colorimetry section are redundant. However, decoding YC
b
C

r
 to RGB primaries requires

the YC
b
C

r
 tags and interpretation of the resulting RGB primaries requires the colorimetry

and transfer function information. See the RGB Colorimetry section for details.

Extensions to Existing Tags

Class Y images use a distinct PhotometricInterpretation Tag value:

PhotometricInterpretation

Tag = 262 (106.H)

Type = SHORT

N = 1

This Tag indicates the color space of the image. The new value is:

6 = YC
b
C

r

A value of 6 indicates that the image data is in the YC
b
C

r
 color space. TIFF uses the

international standard notation YC
b
C

r
 for color difference sample coding. Y is the

luminance component. C
b
 and C

r
 are the two chrominance components. RGB pixels are

converted to and from YC
b
C

r
 form for storage and display.

Tags defined in Class Y

YC
b
C

r
Coefficients

Tag = 529 (211.H)

Type = RATIONAL

N = 3

The transformation from RGB to YC
b
C

r
 image data. The transformation is specified as

three rational values which represent the coefficients used to compute luminance, Y.

The three rational coefficient values, LumaRed, LumaGreen and LumaBlue, are the

proportions of red, green, and blue respectively in luminance, Y.

Y, C
b
, and C

r
  may be computed from RGB using the luminance coefficients specified by

this tag as follows:

Y   = ( LumaRed * R + LumaGreen * G + LumaBlue * B )

C
b
 = ( B - Y ) / ( 2 - 2 * LumaBlue  )

C
r
  = ( R - Y ) / ( 2 - 2 * LumaRed  )



92

TIFF 6.0 Draft 1—February 14, 1992

R, G, and B may be computed from YC
b
C

r 
as follows:

R   = C
r 
*

 
( 2 - 2 * LumaRed  ) + Y

G   = ( Y - LumaBlue * B - LumaRed * R
 
 ) / LumaGreen

B   = C
b 
* ( 2 - 2 * LumaBlue  ) + Y

In disciplines such as printing, film and video there are practical reasons to provide

footroom codes below the ReferenceBlack code and headroom codes above

ReferenceWhite code. In such cases the values of the transformation matrix used to

convert from YC
b
C

r
 to RGB must be multiplied by a scale factor in order to produce full

range RGB values. These scale factors depend on the reference ranges specified by the

ReferenceBlackWhite tag. See the ReferenceBlackWhite and TransferFunction tags for

more details.

The values coded by this tag will typically reflect the transformation specified by a

standard for YC
b
C

r 
encoding. The following table contains examples of commonly used

values.

Standard LumaRed LumaGreen LumaBlue

CCIR Recommendation 601-1         299 / 1000   587 / 1000 114 / 1000
CCIR Recommendation 709 2125 / 10000 7154 / 10000 721 / 10000

The default values for this tag are those defined by CCIR Recommendation 601-1: 299/

1000, 587/1000 and 114/1000, for LumaRed, LumaGreen and LumaBlue, respectively.

YC
b
C

r
SubSampling

Tag = 530 (212.H)

Type = SHORT

N = 2

Specifies the subsampling factors used for the chrominance components of a YC
b
C

r

image. The two fields of this tag, YC
b
C

r
SubsampleHoriz and YC

b
C

r
SubsampleVert,

specify the horizontal and vertical subsampling factors respectively.

The two fields of this tag are defined as follows:

Short 0: YC
b
C

r
SubsampleHoriz:

1 = ImageWidth of this chroma image is equal to the ImageWidth

of the associated luma image.

2 = ImageWidth of this chroma image is half the ImageWidth of

the associated luma image.

4 = ImageWidth of this chroma image is one quarter the

ImageWidth of the associated luma image.

Short 1: YC
b
C

r
SubsampleVert:

1 = ImageLength (height) of this chroma image is equal to the

ImageLength of the associated luma image.

2 = ImageLength (height) of this chroma image is half the

ImageLength of the associated luma image.

4 = ImageLength (height) of this chroma image is one quarter the
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ImageLength of the associated luma image.

Both C
b
 and C

r
 have the same subsampling ratio. Also, YC

b
C

r
SubsampleVert shall always

be less than or equal to YC
b
C

r
SubsampleHoriz.

ImageWidth and ImageLength are constrained to be integer multiples of

YC
b
C

r
SubsampleHoriz and YC

b
C

r
SubsampleVert respectively.  TileWidth and TileLength

have the same constraints. RowsPerStrip must be an integer multiple of

YC
b
C

r
SubsampleVert.

The default values of this tag are [ 2, 2 ].

YC
b
C

r
Positioning

Tag = 531 (213.H)

Type = SHORT

N = 1

Specifies the positioning of subsampled chrominance components relative to luminance

samples.

Specification of the spatial positioning of pixel samples relative to the other samples is

necessary for proper image post processing and accurate image presentation. In Class Y

files, the position of the subsampled chrominance components are defined with respect to

the luminance component. Since components must be sampled orthogonally (along rows

and columns), the spatial position of the samples in a given subsampled component may

be determined by specifying the horizontal and vertical offsets of the first sample, i.e. the

sample in the upper left corner, with respect to the luminance component. The horizontal

and vertical offsets of the first chrominance sample are denoted Xoffset[0,0] and

Yoffset[0,0] respectively. Xoffset[0,0] and Yoffset[0,0] are defined in terms of the

number of samples in the luminance component.

The values for this tag are defined as follows:

Tag value YCbCr Positioning  X and Y offsets of first chrominance sample  

1
  
centered                              Xoffset[0,0] = ChromaSubsampleHoriz  / 2 - 0.5

Yoffset[0,0] = ChromaSubsampleVert   / 2 - 0.5

2
  
cosited

   
Xoffset[0,0] = 0
Yoffset[0,0] = 0

Tag value 1 (centered) must be specified for compatibility with industry standards such

as Postcript Level 2 and QuickTime. Tag value 2 (cosited) must be specified for compat-

ibility with most digital video standards, such as CCIR Recommendation 601-1.

As an example, for ChromaSubsampleHoriz  = 4 and ChromaSubsampleVert  = 2, the

centers of the samples are positioned as illustrated below:
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  YC
b
C

r
Positioning = 1 YC

b
C

r
Positioning = 2

Luminance samples

Chrominance samples

Proper subsampling of the chrominance components incorporates an anti-aliasing filter

which reduces the spectral bandwidth of the full resolution samples. The type of filter

used for subsampling determines the value of the YC
b
C

r
Positioning tag.

For YC
b
C

r
Positioning = 1 (centered), subsampling of the chrominance components can

easily be accomplished using a symmetrical digital filter with an even number of taps

(coefficients). A commonly used filter for 2:1 subsampling utilizes two taps (1/2,1/2).

For YC
b
C

r
Positioning = 2 (cosited), subsampling of the chrominance components can

easily be accomplished using a symmetrical digital filter with an odd number of taps. A

commonly used filter for 2:1 subsampling utilizes three taps (1/4,1/2,1/4).

The default value of this tag is 1.

ReferenceBlackWhite

Tag = 532 (214.H)

Type = LONG

N = 2 x SamplesPerPixel

This tag specifies a pair of image data values (codes) for each component of the image

data. The first value conveys the image data value associated with ReferenceBlack and

the second value conveys the image data value associated with ReferenceWhite.

Computer graphics commonly places black and white at the extremities of the binary

representation of image data, for example black at code 0 and white at code 255. In other

disciplines such as printing, film and video there are practical reasons to provide

footroom codes below ReferenceBlack and headroom codes above ReferenceWhite.

In print applications, the reference values typically correspond to 100% and 0% ink

coverage. In film applications, the reference values typically correspond to the densities

Dmax and Dmin. In video applications, the reference black value corresponds to 7.5 IRE

and 0 IRE in systems with and without setup respectively and the ReferenceWhite

corresponds to 100 IRE units.
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Using Class Y and the CCIR Recommendation 601-1 video standard as an example, code

16 represents ReferenceBlack and code 235 represents ReferenceWhite for the luminance

(Y) component. For the chrominance components (Cb and Cr), code 128 represents

ReferenceBlack and code 240 represents ReferenceWhite. With Cb and Cr the

ReferenceWhite value is used to code reference blue and reference red respectively.

The full range component value, FullRangeValue, is converted from the code by:

    FullRangeValue = (code - ReferenceBlack) * CodingRange

        / (ReferenceWhite - ReferenceBlack);

The code is converted from the full range component value by:

    code = (FullRangeValue * (ReferenceWhite - ReferenceBlack) / CodingRange)

        + ReferenceBlack;

For RGB images, and for the Y component of YCbCr images, the CodingRange is 2 **

BitsPerSample - 1.  For the Cb and Cr components of YCbCr images, the CodingRange

is 127.

For RGB images, in the default special case of no headroom or footroom this conversion

can be omitted because the scaling multiplier is one and the value equals the code.

For YCbCr images, in the case of no headroom or footroom the conversion for Y can be

omitted since the value equals the code. For Cb and Cr, ReferenceBlack must still be

subtracted from the code. In the general case, the scaling multiplication for each compo-

nent code can be factored into the YCbCr transform matrix.

Useful ReferenceBlackWhite values for Class Y images are:

    [0, 255, 128, 255, 128, 255]    no headroom/footroom

    [16, 235, 128, 240, 128, 240]   CCIR Rec. 601-1 headroom/footroom

Useful ReferenceBlackWhite values for Class R images are:

    [0, 255, 0, 255, 0, 255]        no headroom/footroom (default)

    [16, 235, 16, 235, 16, 235]  CCIR Rec. 601-1 headroom/footroom

Default is [0, (2 ** BitsPerSample) - 1] for each component in a pixel.

Ordering of Component Samples

This section defines the ordering convention used for Y, C
b
, and C

r
 component samples

when the PlanarConfiguration tag value = 1 (interleaving).  For PlanarConfiguration = 2,

component samples are stored as 3 separate planes and the ordering is the same as for

other PhotometricInterpretation tag values.

For PlanarConfiguration = 1, the component sample order is based on the subsampling

factors, ChromaSubsampleHoriz and ChromaSubsampleVert, defined by the

YC
b
C

r
SubSampling tag. The image data within a TIFF file is comprised of one or more
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“data units”, where a data unit is defined to be a sequence of samples:

•    one or more Y samples

•    a  C
b 
sample

•    a  C
r 
sample

The Y samples within a data unit are specified as a two dimensional array having

ChromaSubsampleVert rows of ChromaSubsampleHoriz samples.

Expanding on the example in the previous section, consider a YC
b
C

r
 image having

ChromaSubsampleHoriz  = 4 and ChromaSubsampleVert  = 2:

Y00 Y01

Y10 Y11

Y02

Y12

Cb00 Cr00

Y component Cb component Cr component

Y05Y04

Y13

Y03

For PlanarConfiguration = 1, the sample order is:

Y
00

, Y
01

, Y
02

, Y
03

, Y
10

, Y
11

, Y
12

, Y
13

, Cb
00

, Cr
00

, Y
04

, Y
05 

...

Minimum Requirements for YCbCr Images

In addition to the general Baseline TIFF requirements, a YCbCr file must have the

following characteristics:

SamplesPerPixel = 3. SHORT. Three components representing Y, Cb and Cr.

BitsPerSample = 8,8,8. SHORT.

Compression = none (1), LZW (5) or JPEG (6). SHORT.

PhotometricInterpretation = YC
b
C

r 
(6). SHORT.

ReferenceBlackWhite = 6 LONGS. Specify the reference values for black and

white.

If the conversion from RGB is not according to CCIR Recommendation 601-1,

code YC
b
C

r
Coefficients.
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Section 25: JPEG Compression

Send any comments to:

Eric Hamilton

C-Cube Microsystems

eric@c3.pla.ca.us

Introduction

Image compression reduces the storage requirements of pictorial data. In addition, it

reduces the time necessary for access, communication and display of images. In order to

address the standardization of compression techniques an international standards group

was formed: the Joint Photographic Experts Group (JPEG). JPEG has as its objective to

create a joint ISO/CCITT standard for continuous tone image compression (color and

grayscale).

JPEG decided that because of the broad scope of the standard, no one algorithmic

procedure was able to satisfy the requirements of all applications. It was decided to

specify different algorithmic processes where each process is targeted to satisfy the

requirements of a class of applications. Thus the JPEG standard became a “toolkit”

whereby the particular algorithmic “tools” are selected according to the needs of the

application environment.

The algorithmic processes fundamentally fall into two classes: lossy and lossless. Those

based on the Discrete Cosine Transform (DCT) are lossy, and typically provide for

substantial compression without significant degradation of the reconstructed image with

respect to the source image.

The simplest DCT-based coding process is the baseline process. It provides a capability

which is sufficient for most applications.  There are additional DCT-based processes

which extend the baseline process to a broader range of applications.

The second class of coding processes is targeted for those applications requiring lossless

compression. The lossless processes are not DCT-based and are utilized independently of

any of the DCT-based processes.

This Section describes the JPEG baseline and the JPEG lossless processes and the

extensions to TIFF defined to support JPEG compression.

JPEG Baseline Process

The baseline process is a DCT-based algorithm which compresses images having 8 bits

per component. The baseline process operates only in sequential mode. In sequential

mode, the image is processed from left to right and top to bottom in a single pass by

compressing the first row of data followed by the second row and continuing until the

end of image is reached. Sequential operation has minimal buffering requirements and

thus permits inexpensive implementations.

The JPEG baseline process is an algorithm which inherently introduces error into the
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reconstructed image and cannot be utilized for lossless compression. The algorithm

accepts as input only those images having 8 bits per component. Images with fewer than

8 bits per component may be compressed using the baseline process algorithm by left

justifying each input component within a byte before compression.

Entropy Coding

2 DC and AC Tables

Forward Transform

8x8 2-D DCT

Uniform Quantization

Up to 4 Quant. Tables

1-D DC Prediction

Entropy Decoding

 Receives 2+2 Tables

Inverse Transform

8x8 2-D IDCT

Inverse Quantization

Receives 4 Tables

1-D DC Prediction

Input Picture Output Picture

Figure 1.  Baseline Process Encoder and Decoder

A functional block diagram of the Baseline encoding and decoding processes is contained

in Figure 1. Encoder operation consists of dividing each component of the input image

into 8x8 blocks, performing the two-dimensional DCT on each block, quantizing each

DCT coefficient uniformly, subtracting the quantized DC coefficient from the corre-

sponding term in the previous block, and finally entropy coding the quantized coeffi-

cients using variable length codes (VLCs). Decoding is performed by inverting each of

the encoder operations in the reverse order.

The DCT

Before performing the foward DCT input pixels are level-shifted so that they range from

-128 to +127. Blocks of 8x8 pixels are transformed with the two-dimensional 8x8 DCT:

F(u,v) = 
1

4
 C(u)C(v) ∑∑ f(x,y) cos

π(2x+1)u

16
  cos

π(2y+1)v

16

and blocks are inverse transformed by the decoder with the Inverse DCT:

f(x,y) = 
1

4
 ∑ ∑ C(u)C(v) F(u,v) cos

π(2x+1)u

16
  cos

π(2y+1)v

16
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with   u, v, x, y = 0, 1, 2, ... 7

where x, y = spatial coordinates in the pel domain

u, v = coordinates in the transform domain

C(u), C(v) =
1

2
for u, v = 0

1 otherwise

Although the exact method for computation of the DCT and IDCT is not subject to

standardization and will not be specified by JPEG, it is probable that JPEG will adopt

DCT conformance specifications which designate the accuracy to which the DCT must

be computed. The DCT conformance specifications will assure that any two JPEG

implementations will produce visually similar reconstructed images.

Quantization

The coefficients of the DCT are quantized to reduce their magnitude and increase the

number of zero-value coefficients. The DCT coefficients are independently quantized by

uniform quantizers. A uniform quantizer divides the real number line into steps of equal

size as shown in Figure 2. The quantization step-size applied to each coefficient is

determined from the contents of a 64-element quantization table.

1

2

3

-1

-2

-3

1 Q 3 Q-1 Q-2 Q-3 Q

C (u,v)

F (u,v)
2 Q

Figure 2.  Uniform Quantization

The baseline process provides for up to 4 different quantization tables to be defined and

assigned to separate interleaved components within a single scan of the input image.

Although the values of each quantization table should ideally be determined through

rigorous subjective testing which estimates the human psycho-visual thresholds for each

DCT coefficient and for each color component of the input image, JPEG has developed

quantization tables which work well for CCIR 601 resolution images and has published

these in the informational section of the proposed standard.
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DC Prediction

The DCT coefficient located in the upper-left hand corner of the transformed block

represents the average spatial intensity of the block and is referred to as the “DC coeffi-

cient”. After the DCT coefficients are quantized but before they are entropy coded, DC

prediction is performed. DC prediction simply means that the DC term of the previous

block is subtracted from the DC term of the current block prior to encoding.

Zig-Zag Scan

Prior to entropy coding, the DCT coefficients are ordered into a one-dimensional se-

quence according to a “zig-zag” scan. The DC coefficient is coded first followed by AC

coefficient coding proceeding in the order illustrated in Figure 3.

Figure 3.  Zig-Zag Scan of DCT Coefficients

Entropy Coding

The quantized DCT coefficients are further compressed using entropy coding. The

baseline process performs entropy coding using variable length codes (VLCs) and

variable length integers (VLIs).

VLCs, commonly known as Huffman codes, compress data symbols by creating shorter

codes to represent frequently occurring symbols and longer codes for occasionally

occurring symbols. One reason for using VLCs is that they are easily implemented by

means of lookup tables.

Separate code tables are provided for the coding of DC and AC coefficients. The follow-

ing sections describe the respective coding methods used for coding DC and AC coeffi-

cients.

DC Coefficient Coding

DC prediction produces a “differential DC coefficient” which is typically small in

magnitude due to the high correlation of neighboring DC coefficients. Each differential

DC coefficient is encoded by a VLC which represents the number of significant bits in

the DC term followed by a VLI representing the value itself. The VLC is coded by first

determining the number of significant bits, SSSS, in the differential DC coefficient
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through the following table:

SSSS              Differential DC Value

0                                 0

1                              -1, 1

2                          -3,-2, 2,3

3                         -7..-4, 4..7

4                       -15..-8, 8..15

5                     -31..-16, 16..31

6                     -63..-32, 32..63

7                   -127..-64, 64..127

8                  -255..-128, 128..255

9                  -511..-256, 256..511

10               -1023..-512, 512..1023

11              -2047..-1024, 1024..2047

12              -4095..-2048, 2048..4095

SSSS is then coded from the selected DC VLC table. The VLC is followed by a VLI

having SSSS bits which represents the value of the differential DC coefficient itself. If

the coefficient is positive, the VLI is simply the low order bits of the coefficient. If the

coefficient is negative, then the VLI is the low order bits of the coefficient-1.

AC Coefficient Coding

In a similar fashion, AC coefficients are coded with alternating VLC and VLI codes. The

VLC table, however, is a two-dimensional table which is indexed by a composite 8-bit

value. The lower 4 bits of the 8-bit value, i.e. the column index, is the number of signifi-

cant bits, SSSS, of a non-zero AC coefficient. SSSS is computed through the same table

as that used for coding the DC coefficient. The higher order 4 bits, the row index, is the

number of zero coefficients, NNNN, which precede the non-zero AC coefficient. The

first column of the two-dimensional coding table contains codes which represent control

functions. Figure 4 illustrates the general structure of the AC coding table.
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SSSS - Size of Non-Zero AC Coefs

0        1   2   .  .  .    10              11. . .15

   E O B

 Z R L

0

.

.

.

15

NNNN

of

Zero

Run

Length

Figure 4.  2-D Run-Size Value Array for AC Coefs

The shaded portions are undefined in the baseline process

The flow chart in Figure 5 specifies the AC coefficient coding procedure.  AC coeffi-

cients are coded by traversing the block in the zig-zag sequence and counting the number

of zero coefficients until a non-zero AC coefficient is encountered. If the count of

consecutive zero coefficients exceeds 15, then a ZRL code is coded and the zero run-

length count is reset. When a non-zero AC coefficient is found, the number of significant

bits in the non-zero coefficient, SSSS, is combined with the zero run-length which

precedes that coefficient, NNNN, to form an index into the two-dimensional VLC table.

The selected VLC is then coded. The VLC is followed by a VLI which represents the

value of the AC coefficient. This process is repeated until the end of block is reached. If

the last AC coefficient is zero, then an End of Block (EOB) VLC is encoded.
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K = 0

R = 0

K =  K + 1 R =  R + 1

K =  63 ?

R > 15 ?

Code R,Coef (K)

R = 0

K =  63 ?

Start

Code (EOB)

Code (ZRL)

R = R - 16

Y

N

N

N

N

Y

Y

Y

Coef(K) =  0?

Done

Figure 5.  Encoding Procedure for AC Coefs

JPEG Lossless Processes

The JPEG lossless coding processes utilize a spatial prediction algorithm based upon a

two-dimensional Differential Pulse Code Modulation (DPCM) technique. They are

compatible with a wider range of input pixel precision than the DCT-based algorithms (2

to 16 bits per component). Although the primary motivation for specifying a spatial

algorithm is to provide a method for lossless compression, JPEG allows for quantization

of the input data, resulting in lossy compression and higher compression rates.

Although JPEG provides for use of either the Huffman or Arithmetic entropy coding

models by the processes for lossless coding, only the Huffman coding model is supported

by this version of TIFF. The following is a brief overview of the lossless process with

Huffman coding.

Control Structure

Much of the control structure developed for the sequential DCT procedures is also used

for sequential lossless coding. Either interleaved or non-interleaved data ordering may be

used.

Coding Model

The coding model developed for coding the DC coefficients of the DCT is extended to

allow a number of one-dimensional and two-dimensional predictors for the lossless

coding function. Each component uses an independent predictor.
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Prediction

Figure 6 shows the relationship between the neighboring values used for prediction and

the sample being coded.

         |   |   |   |   |
       --+---+---+---+---+--
         |   | C | B |   |
       --+---+---+---+---+--
         |   | A | Y |   |
       --+---+---+---+---+--
         |   |   |   |   |

Figure 6.  Relationship between sample and prediction samples

Y is the sample to be coded and A, B, and C are the samples immediately to the left,

immediately above, and diagonally to the left and above.

The allowed predictors are listed in the following table.

        Selection-value           Prediction

               0                  no prediction (differential coding)

               1                     A

               2                     B

               3                     C

               4                     A+B-C

               5                     A+((B-C)/2)

               6                     B+((A-C)/2)

               7                     (A+B)/2

Selection-value 0 shall only be used for differential coding in the hierarchical mode.

Selections 1, 2 and 3 are one dimensional predictors and selections 4, 5, 6, and 7 are two

dimensional predictors. The divide by 2 in the prediction equations is done by a arith-

metic-right-shift of the integer values.

The difference between the prediction value and the input is calculated modulo 2**16.

Therefore, the prediction can also be treated as a modulo 2**16 value.  In the decoder the

difference is decoded and added, modulo 2**16, to the prediction.

Huffman Coding of the Prediction Error

The Huffman coding procedures defined for coding the DC coefficients are used to code

the modulo 2**16 differences. The table for DC coding is extended to 17 entries which

allows for coding of the modulo 2**16 differences.

Point Transformation Prior to Lossless Coding

For the lossless processes only, the input image data may optionally be scaled (quantized)
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prior to coding by specifying a nonzero value in the point transformation parameter. Point

transformation is defined to be division by a power of 2.

If the point transformation field is nonzero for a component, a point transformation of the

input is performed prior to the lossless coding.  The input is divided by 2**Pt, where Pt is

the value of the point transform signaling field. The output of the decoder is rescaled to

the input range by multiplying by 2**Pt. Note that the scaling of input and output can be

performed by arithmetic shifts.

Overview of the JPEG extension to TIFF

In extending the TIFF definition to include JPEG compressed data, it is necessary to note

the following:

• JPEG is effective only on continuous-tone color spaces:

Grayscale (Photometric Interpretation = 1)

RGB (Photometric Interpretation = 2)

CMYK (Photometric Interpretation = 5) (See the CMYK Images

section.)

YCbCr (Photometric Interpretation = 6) (See the YCbCr

images section.)

• Color conversion to YCbCr is often used as part of the compression process

because the chrominance components can be subsampled and compressed to a

greater degree without significant visual loss of quality. Tags are defined to

describe how this conversion has taken place and the degree of subsampling

employed (see the YCbCr Images section).

• New tags have been defined to specify the JPEG parameters used for compres-

sion and to allow quantization tables and Huffman code tables to be

incorporated into the TIFF file.

• TIFF is compatible with compressed image data which conforms to the syntax

of the JPEG interchange format for compressed image data. Tags are defined

which may be utilized to facilitate conversion from TIFF to interchange format.

• The PlanarConfiguration Tag is used to specify whether or not the compressed

data is interleaved as defined by JPEG. For any of the JPEG DCT-based

processes, the interleaved data units are coded 8x8 blocks rather than component

samples.

• Alhough JPEG codes consecutive image blocks in a single contiguous bitstream,

it is extremely useful to employ the concept of tiles in an image. The TIFF Tiles

section defines some new tags for tiles, which should be used in place of the

older tags for strips. The concept of tiling an image in both dimensions is
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important because JPEG hardware may be limited in the size of each block that

is handled.

• Note that the nomenclature used in the TIFF specification is different from the

JPEG Draft International Standardittee Draft (ISO DIS 10918-1) in some

respects. The following terms should be equated when reading this Section:

TIFF name JPEG DIS name

ImageWidth Number of Pixels

ImageLength Number of Lines

SamplesPerPixel Number of Components

JPEGQTable Quantization Table

JPEGDCTable Huffman Table for DC coefficients

JPEGACTable Huffman Table for AC coefficients

Strips and Tiles

The JPEG extension to TIFF has been designed to be consistent with the existing TIFF

strip and tile structures and to allow quick conversion to and from the stream-oriented

compressed image format defined by JPEG.

Compressed images conforming to the syntax of the JPEG interchange format can be

converted to TIFF simply by defining a single strip or tile for the entire image and then

concatenating the TIFF image description fields to the JPEG compressed image data. The

strip or tile offset tag points directly to the start of the entropy coded data (not to a JPEG

marker).

Multiple strips or tiles are supported in JPEG compressed images using restart markers.

Restart markers, inserted periodically into the compressed image data, delineate image

segments known as restart intervals. At the start of each restart interval, coding state is

reset to default values, allowing every restart interval to be decoded independently of

previously decoded data. TIFF strip and tile offsets shall always point to the start of a

restart interval. Equivalently, each strip or tile contains an integral number of restart

intervals. Restart markers need not be present in a TIFF file; they are implicitly coded at

the start of every strip or tile.

In order to maximize interchangeability of TIFF files with other formats, a restriction is

placed on tile height for files containing JPEG compressed image data conforming to the

JPEG interchange format syntax. The restriction, imposed only when the tile width is

defined to be shorter than the image width and when the JPEGInterchangeFormat Tag is

present and non-zero, states that the tile height must be equal to the height of one JPEG

Minimum Coded Unit (MCU). This restriction ensures that TIFF files may be converted

to JPEG interchange format without undergoing decompression.
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Extensions to Existing Tags

Compression

Tag = 259 (103.H)

Type = SHORT

N = 1

This Tag indicates the type of compression used. The new value is:

 6 = JPEG

New Tags

JPEGProc

Tag = 512 (200.H)

Type  = SHORT

N = 1

This Tag indicates the JPEG process used to produce the compressed data. The values for

this tag are defined to be consistent with the numbering convention used in ISO DIS

10918-2. Two values are defined at this time.

1 = Baseline sequential process

14 = Lossless process with Huffman coding

When the lossless process with Huffman coding is selected by this Tag, the Huffman

tables used to encode the image are specified by the JPEGDCTables tag, and the

JPEGACTables tag is not used.

Values indicating JPEG processes other than those specified above will be defined in the

future.

Not all of the tags described in this Section are relevant to the JPEG process selected by

this Tag. The following table specifies the tags which are applicable to each value

defined by this Tag.

Tag Name JPEGProc =1 JPEGProc =14

JPEGInterchangeFormat X X

JPEGInterchangeFormatLength X X

JPEGRestart Interval X X

JPEGLosslessPredictors X

JPEGPointTransforms X

JPEGQTables X

JPEGDCTables X X

JPEGACTables X

This Tag is mandatory whenever the Compression Tag is JPEG (no default).

JPEGInterchangeFormat

Tag = 513 (201.H)
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Type  = LONG

N = 1

This Tag indicates whether or not a JPEG interchange format bitstream is present in the

TIFF file. If a JPEG interchange format bitstream is present then this Tag points to the

Start of Image (SOI) marker code.

If this Tag is zero or not present, a JPEG interchange format bitstream is not present.

JPEGInterchangeFormatLength

Tag = 514 (202.H)

Type = LONG

N = 1

This Tag indicates the length in bytes of the JPEG interchange format bitstream. This Tag

is useful for extracting the JPEG interchange format bitstream without parsing the

bitstream.

This Tag is relevant only if the JPEGInterchangeFormat Tag is present and is non-zero.

JPEGRestartInterval

Tag = 515 (203.H)

Type = SHORT

N = 1

This Tag indicates the length of the restart interval used in the compressed image data.

The restart interval is defined as the number of Minimum Coded Units (MCUs) between

restart markers.

Restart intervals are used in JPEG compressed images to provide support for multiple

strips or tiles. At the start of each restart interval, coding state is reset to default values,

allowing every restart interval to be decoded independently of previously decoded data.

TIFF strip and tile offsets shall always point to the start of a restart interval. Equivalently,

each strip or tile contains an integral number of restart intervals. Restart markers need not

be present in a TIFF file; they are implicitly coded at the start of every strip or tile.

See the JPEG Draft International Standard (ISO DIS 10918-1) for more information

about the restart interval and restart markers.

If this Tag is zero or is not present, the compressed data does not contain restart markers.

JPEGLosslessPredictors

Tag = 517 (205.H)

Type = SHORT

N = SamplesPerPixel

This Tag points to a list of lossless predictor selection-values, one per component.

The allowed predictors are listed in the following table.

 Selection-value       Prediction

               1                     A

               2                     B

               3                     C
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               4                     A+B-C

               5                     A+((B-C)/2)

               6                     B+((A-C)/2)

               7                     (A+B)/2

 A, B, and C are the samples immediately to the left, immediately above, and diagonally

to the left and above the sample to be coded respectively.

See the JPEG Draft International Standard (ISO DIS 10918-1) for more details.

This Tag is mandatory whenever the JPEGProc Tag specifies one of the lossless pro-

cesses (no default).

JPEGPointTransforms

Tag = 518 (206.H)

Type = SHORT

N = SamplesPerPixel

This Tag points to a list of point transform values, one per component. This Tag is

relevant only for lossless processes.

If the point transformation value is nonzero for a component, a point transformation of

the input is performed prior to the lossless coding. The input is divided by 2**Pt, where

Pt is the point transform value. The output of the decoder is rescaled to the input range by

multiplying by 2**Pt. Note that the scaling of input and output can be performed by

arithmetic shifts.

See the JPEG Draft International Standard (ISO DIS 10918-1) for more details.

The default value of this Tag is 0 for each component (no scaling).

JPEGQTables

Tag = 519 (207.H)

Type = LONG

N = SamplesPerPixel

This Tag points to a list of offsets to the quantization tables, one per component.

Each table consists of 64 BYTES (one for each DCT coefficient in the 8x8 block). The

quantization tables are stored in zigzag order.

See the JPEG Draft International Standard (ISO DIS 10918-1) for more details.

It is strongly recommended that, within the TIFF file, each component be assigned

separate tables.

This Tag is mandatory whenever the JPEGProc Tag specifies a DCT-based process (no

default).

JPEGDCTables

Tag = 520 (208.H)

Type = LONG

N = SamplesPerPixel

This Tag points to a list of offsets to the DC Huffman tables or the lossless Huffman

tables, one per component.
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The format of each table is as follows:

16 BYTES of “BITS”, indicating the number of codes of lengths 1 to 16;

Up to 17 BYTES of “VALUES”, indicating the values associated with those

codes, in order of length.

See the JPEG Draft International Standard (ISO DIS 10918-1) for more details.

It is strongly recommended that, within the TIFF file, each component be assigned

separate tables.

This Tag is mandatory for all JPEG processes (no default).

JPEGACTables

Tag = 521 (209.H)

Type = LONG

N = SamplesPerPixel

This Tag points to a list of offsets to the Huffman AC tables, one per component.

The format of each table is as follows:

16 BYTES of “BITS”, indicating the number of codes of lengths 1 to 16;

Up to 256 BYTES of “VALUES”, indicating the values associated with those

codes, in order of length.

See the JPEG Draft International Standard (ISO DIS 10918-1) for more details.

It is strongly recommended that, within the TIFF file, each component be assigned

separate tables.

This Tag is mandatory whenever the JPEGProc Tag specifies a DCT-based process (no

default).
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Minimum Requirements for TIFF with JPEG Compres-
sion

The following table shows the minimum requirements of a TIFF file using tiling

and containing JPEG data compressed with the Baseline process.
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Tag    = NewSubFileType (254)
Type   = Long
Length = 1
Value  = 0

Single image

Tag    = ImageWidth (256)
Type   = Long
Length = 1
Value  = ?
Tag    = ImageLength (257)
Type   = Long
Length = 1
Value  = ?
Tag    = BitsPerSample (258)
Type   = Short
Length = SamplesPerPixel
Value  = ?

8 : Monochrome
8,8,8 : RGB
8,8,8 : YCbCr  
8,8,8,8 : CMYK

Tag    = Compression (259)
Type   = Long
Length = 1
Value  = 6

6 : JPEG compression

Tag    = PhotometricInterpretation (262)
Type   = Short
Length = 1
Value  = ?

0,1 : Monochrome
2 : RGB
5 : CMYK
6 : YCbCr

Tag    = SamplesPerPixel (277)
Type   = Short
Length = 1
Value  = ?

1 : Monochrome
3 : RGB
3 : YCbCr
4 : CMYK

Tag    = XResolution (282)
Type   = Rational
Length = 1
Value  = ?
Tag    = YResolution (283)
Type   = Rational
Length = 1
Value  = ?
Tag    = PlanarConfiguration (284)
Type   = Short
Length = 1
Value  = ?

1 : Block Interleaved
2 : Not interleaved

Tag    = ResolutionUnit (296)
Type   = Short
Length = 1
Value  = ?

Tag    = TileWidth (322)
Type   = Short
Length = 1
Value  = ?

Multiple of 8

Tag    = TileLength (323)
Type   = Short
Length = 1
Value  = ?

Multiple of 8

Tag    = TileOffsets (324)
Type   = Long
Length = Number of tiles
Value  = ?
Tag    = TileByteCounts (325)
Type   = Long
Length = Number of tiles
Value  = ?
Tag    = JPEGProc (512)
Type   = Short
Length = 1
Value  = ?

1 : Baseline process

Tag    = JPEGQTables (519)
Type   = Long
Length = SamplesPerPixel
Value  = ?

Offsets to tables

Tag    = JPEGDCTables (520)
Type   = Long
Length = SamplesPerPixel
Value  = ?

Offsets to tables

Tag    = JPEGACTables (521)
Type   = Long
Length = SamplesPerPixel
Value  = ?

Offsets to tables
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Section 26:  CIELAB Images

What is CIELAB?

CIELAB is a color space which is colorimetric, has separate lightness and chroma

channels, and is approximately perceptually uniform. It has excellent applicability for

device independent manipulation of continuous tone images. These attributes make it an

excellent choice for many image editing functions.

1976 CIEL*a*b* is represented as a Euclidean space with the following three quantities

plotted along axes at right angles: L* representing lightness; a* representing the red/green

axis, and b* representing the yellow/blue axis.

The formulas for 1976 CIE L*a*b* follow:

L*=116(Y/Yn)1/3−16 for Y/Yn > 0.008856

L*=903.3(Y/Yn) for Y/Yn <= 0.008856 *see note below.

a*=500[(X/Xn)1/3−(Y/Yn)1/3]

b*=200[(Y/Yn)1/3−(Z/Zn)1/3].

where X
n
,Y

n
, and Z

n
 are the CIE X, Y, and Z tristimulus values of an appropriate reference

white. Also, if any of the ratios X/X
n
, Y/Y

n
, or Z/Z

n
 is equal to or less than 0.008856, it is

replaced in the formulas with

7.787F + 16/116,

where F is X/X
n
, Y/Y

n
, or Z/Z

n
,
 
as appropriate (note: these low-light conditions are of no

relevance for most document imaging applications). Tiff is defined such that each

quantity be encoded with 8 bits. This provides 256 levels of L* lightness; 256 levels (+/-

127) of a*, and 256 levels (+/- 127) of b*. Dividing the 0-100 range of L* into 256 levels

provides lightness steps that are less than half the size of a “just noticeable difference”.

This eliminates banding, even under conditions of substantial tonal manipulation.

Limiting the theoretically unbounded a* and b* ranges to +/- 127 allows encoding in 8

bits without eliminating any but the most saturated self-luminous colors. It is anticipated

that the rare specialized applications requiring support of these extreme cases would be

unlikely to use CIELAB anyway. All object colors, in fact all colors within the theoretical

MacAdam limits, fall within the +/- 127 a*/b* range.

The TIFF CIELAB Tags.

PhotometricInterpretation

Tag = 262 (106)

Type = SHORT
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N = 1

8 = 1976 CIE L*a*b*

Usage of other Tags.

BitsPerSample: 8

SamplesPerPixel - ExtraSamples: 3 for L*a*b*, 1 implies L* only, for monochrome data.

Compression: same as other multi-bit formats. JPEG compression applies.

PlanarConfiguration: both chunky and planar data could be supported.

WhitePoint: does not apply

PrimaryChromaticities: does not apply.

TransferFunction: does not apply

Alpha Channel information will follow the lead of other data types.

The reference white for this data type is the perfect reflecting diffuser (100% diffuse

reflectance at all visible wavelengths). The L* range is from 0 (perfect absorbing black)

to 100 (perfect reflecting diffuse white). The a* and b* ranges will be represented as

signed 8 bit values having the range -127 to +127.

Converting between RGB and CIELAB, a Caveat

The above CIELAB formulae are derived from CIE XYZ. Converting from CIELAB to

RGB requires an additional set of formulae for converting between RGB and XYZ. For

standard NTSC primaries these are:

R 0.6070 0.1740 0.2000 X

G * 0.2990 0.5870 0.1140 = Y

B 0.0000 0.0660 1.1110 Z

Generally, D65 illumination is used and a perfect reflecting diffuser is used for the

reference white.

Since CIELAB is not a directly displayable format, some conversion to RGB will be

required. While look up table accelerated CIELAB to RGB conversion is certainly

possible and fast, TIFF writers may choose to include a low resolution RGB subfile as an

integral part of TIFF CIELAB.

Color Difference Measurements in CIELAB

The differences between two colors in L*, a*, and b* are denoted by DL*, Da*, and Db*,

respectively, with the total (3-dimensional) color difference represented as:

∆E*ab = [(∆E*)2+(∆a*)2+(∆b*)2]1/2.

This color difference can also be expressed in terms of L*, C*, and a measure of hue. In

this case, h
ab

 is not used because it is an angular measure and cannot be combined with

L* and C* directly. A linear-distance form of hue is used instead:
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CIE 1976 a,b hue-difference, ∆H*ab

∆H*ab =  [(∆E*)2−(∆L*)2−(∆C*)2]1/2.

where DC* is the chroma difference between the two colors. The total color difference

expression using this hue-difference is:

∆E*ab = [(∆L*)2+(∆H*)2+(∆b*)2]1/2.

It is important to remember that color difference is 3-dimensional: much more can be

learned from a DL*a*b* triplet than from a single DE value. The DL*C*H* form is often

the most useful since it gives the error information in a form which has more familiar

perception correlates. Caution is in order, however, when using DH* for large hue

differences since it is a straight-line approximation of a curved hue distance.

The merits of CIELAB

Colorimetric.

First and foremost, CIELAB is colorimetric. It is traceable to the internationally-recog-

nized standard CIE 1931 Standard Observer. This insures that it encodes color in a

manner which is accurately modeled after the human vision system. Colors seen as

matching are encoded identically, and colors seen as not matching are encoded differ-

ently. CIELAB provides an unambiguous definition of color without the necessity of

additional information such as with RGB (primary chromaticities, white point, and

gamma curves).

Device Independent.

Unlike RGB spaces which associate closely with physical phosphor colors, CIELAB

contains no device association. CIELAB is not taylored for one device or device type at

the expence of all others.

Full Color Gamut.

Any one image or imaging device usually encounters a very limited subset of the entire

range of humanly perceptible color. Collectively, however, these images and devices

span a much larger gamut of color. A truly versatile exchange color space should

encompass all of these colors, ideally providing support for all visible color. RGB,

PhotoYCC, YCbCr, and other display spaces suffer from gamut limitations which

exclude significant regions of easily printable colors. CIELAB is defined for all visible

color.
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Efficiency

A good exchange space will maximize accuracy of translations between itself and other

spaces. It will represent colors compactly for a given accuracy. These attributes are

provided through visual uniformity. One of the greatest disadvantages of the classic CIE

system (and RGB systems as well) is that colors within it are far from equally visually

spaced. Encoding full-color images in a linear-intensity space such as the typical RGB

space or, especially the XYZ space, requires a very large range (greater than 8-bits/

primary) to eliminate banding artifacts. Adopting a non-linear RGB space improves the

efficiency but not nearly to the extent as with a perceptually uniform space where these

problems are nearly eliminated. A uniform space is also more efficiently compressed (see

below).

Public Domain / Single Standard

CIELAB maintains no preferential attachments to any private organization. Its existence

as a single standard leaves no room for ambiguity. Since 1976, CIELAB has continually

gained popularity as a widely accepted and heavily used standard.

Luminance/Chrominance Separation.

The advantages for image size compression made possible by having a separate lightness

or luminance channel are immense. Many such spaces exist. The degree to which the

luminance information is fully isolated into a single channel is an important consider-

ation. Recent studies (Kasson and Plouffe of IBM) support CIELAB as a leading candi-

date placing it above CIELUV, YIQ, YUV, Ycc, and XYZ.

Other advantages support a separate lightness or luminance channel. Tone and contrast

editing and detail enhancement are most easily accomplished with such a channel.

Conversion to a black and white representation is also easiest with this type of space.

When the chrominance channels are encoded as opponents as with CIELAB, there are

other compression, image manipulation, and white point handling advantages.

Compressibility (Data).

Opponent spaces such as CIELAB are inherently more compressible than tristimulus

spaces such as RGB. The chroma content of an image can be compressed to a greater

extent, without objectionable loss, than can the lightness content. The opponent arrange-

ment of CIELAB allows for spatial subsampling and efficent compression using JPEG.

Compressibility (Gamut).

Adjusting the color range of an image to match the capabilities of the intended output

device is a critical function within computational color reproduction. Luminance/

chrominance separation, especially when provided in a polar form, is very desirable for

facilitating gamut compression. Accurate gamut compression in a tri-linear color space is

very difficult.
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CIELAB has a polar form (metric hue angle, and metric chroma, described below) which

serves compression needs fairly well. Because CIELAB is not perfectly uniform, prob-

lems can arise when compressing along constant hue lines. Noticeable hue errors are

sometimes introduced. This problem is no less severe with other contending color spaces.

 This polar form also provides advantages for local color editing of images. The polar

form is not proposed as part of the TIFF addition.

Getting the most from CIELAB

Image Editors

The advantages of image editing within a perceptually uniform polar color space are

tremendous. A detailed description of these advantages extends well beyond the scope of

this document. As previously mentioned, many common tonal manipulation tasks are

most efficiently performed when only a single channel is affected. Edge enhancement,

contrast adjustment, and general tone curve manipulation all ideally affect only the

lightness component of an image.

A perceptual polar space works excellently for specifying a color range for masking

purposes. As an example, a red shirt can be quickly changed to a green shirt without the

tedious task of drawing an outline mask. The operation can be performed with a loosely,

and quickly, drawn mask region combined with a hue (and perhaps chroma) range which

encompasses the shirt’s colors. The hue component of the shirt can then be adjusted

leaving the lightness and chroma detail in place.

Color cast adjustment is easily realized by shifting either or both of the chroma channels

over the entire image or blended in over the region of interest.

Converting from CIELAB to a device specific space

For fast conversion to an RGB display, CIELAB can be decoded using 3x3 matrixing

followed by gamma correction. The computational complexity required for accurate CRT

display is the same with CIELAB as with extended luminance-chrominance spaces.

Converting CIELAB for accurate printing on CMYK devices requires computational

complexity no greater than with accurate conversion from any other colorimetric space.

Gamut compression becomes one of the more significant tasks for any such conversion.
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Section 27: TIFF Tags Sorted by

Number

TagName Decimal Hex Type Number of values

NewSubfileType 254 FE LONG 1

SubfileType 255 FF SHORT 1

ImageWidth 256 100 SHORT or LONG 1

ImageLength 257 101 SHORT or LONG 1

BitsPerSample 258 102 SHORT SamplesPerPixel

Compression 259 103 SHORT 1

  Uncompressed 1

  CCITT 1D 2

  Group 3 Fax 3

  Group 4 Fax 4

  LZW 5

  JPEG 6

  PackBits 32773

PhotometricInterpretation 262 106 SHORT 1

  WhiteIsZero 0

  BlackIsZero 1

  RGB 2

  RGB Palette 3

  Transparency mask 4

  CMYK 5

  YCbCr 6

  CIELab 8

Threshholding 263 107 SHORT 1

CellWidth 264 108 SHORT 1

CellLength 265 109 SHORT 1

FillOrder 266 10A SHORT 1

DocumentName 269 10D ASCII

ImageDescription 270 10E ASCII

Make 271 10F ASCII

Model 272 110 ASCII

StripOffsets 273 111 SHORT or LONG StripsPerImage

Orientation 274 112 SHORT 1

SamplesPerPixel 277 115 SHORT 1

RowsPerStrip 278 116 SHORT or LONG 1

StripByteCounts 279 117 LONG or SHORT StripsPerImage

MinSampleValue 280 118 SHORT SamplesPerPixel

MaxSampleValue 281 119 SHORT SamplesPerPixel

XResolution 282 11A RATIONAL 1

YResolution 283 11B RATIONAL 1

PlanarConfiguration 284 11C SHORT 1

PageName 285 11D ASCII

XPosition 286 11E RATIONAL

YPosition 287 11F RATIONAL

FreeOffsets 288 120 LONG

FreeByteCounts 289 121 LONG

GrayResponseUnit 290 122 SHORT 1

GrayResponseCurve 291 123 SHORT 2**BitsPerSample

Group3Options 292 124 LONG 1

Group4Options 293 125 LONG 1

ResolutionUnit 296 128 SHORT 1
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PageNumber 297 129 SHORT 2

TransferFunction 301 12D SHORT {1 or

 SamplesPerPixel} *

 (2 ** BitsPerSample)

Software 305 131 ASCII

DateTime 306 132 ASCII 20

Artist 315 13B ASCII

HostComputer 316 13C ASCII

Predictor 317 13D SHORT 1

WhitePoint 318 13E RATIONAL 2

PrimaryChromaticities 319 13F RATIONAL 6

ColorMap 320 140 SHORT 3 *

(2**BitsPerSample)

HalftoneHints 321 141 SHORT 2

TileWidth 322 142 SHORT or LONG 1

TileLength 323 143 SHORT or LONG 1

TileOffsets 324 144 LONG TilesPerImage

TileByteCounts 325 145 SHORT or LONG TilesPerImage

InkSet 332 14C SHORT 1

InkNames 333 14D ASCII total number of

   characters in all the

   ink name strings,

including the zeros

DotRange 336 150 BYTE or SHORT 2, or

2*SamplesPerPixel

TargetPrinter 337 151 ASCII any

ExtraSamples 338 152 BYTE number of extra

components per pixel

SampleFormat 339 153 SHORT 1

SMinSampleValue 340 154 Any SamplesPerPixel

SMaxSampleValue 341 155 Any SamplesPerPixel

JPEGProc 512 200 SHORT 1

JPEGInterchangeFormat 513 201 LONG 1

JPEGInterchangeFormatLength 514 202 LONG 1

JPEGRestartInterval 515 203 SHORT 1

JPEGLosslessPredictors 517 205 SHORT SamplesPerPixel

JPEGPointTransforms 518 206 SHORT SamplesPerPixel

JPEGQTables 519 207 LONG SamplesPerPixel

JPEGDCTables 520 208 LONG SamplesPerPixel

JPEGACTables 521 209 LONG SamplesPerPixel

YCbCrCoefficients 529 211 RATIONAL 3

YCbCrSubSampling 530 212 SHORT 2

YCbCrPositioning 531 213 SHORT 1

ReferenceBlackWhite 532 214 LONG 2 * SamplesPerPixel
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Index

Symbols

42 10

A

Aldus Developers Desk 48

alpha data 54

associated 72–74

ANSI IT8 74

AppleLink 48

Artist 35

ASCII 13

B

Baseline TIFF 5

big-endian 10

BitsPerSample 15, 27

BlackIsZero 15, 32

BYTE data type 12

C

CCITT 16, 28

CellLength 37

CellWidth 37

chunky format 29

CIELAB images 114

clarifications 6

CMYK Images 69

colorimetry, RGB 85

ColorMap 21, 32

ColorResponseCurves. See

TransferFunction

compatibility 7

compliance 9

component 26

compositing. See alpha data:

associated

compression 15, 27

JPEG 97–113

LZW 57–65

Modified Huffman 43–47

PackBits 42

CompuServe 48

D

DateTime 35

default values 26

Differencing Predictor 66

DocumentName 55

DotRange 73

DOUBLE 13

Duff, Tom 82

E

ExtraSamples 80

F

file extension 14

filetype 14

FillOrder 37

FLOAT 13

FreeByteCounts 38

FreeOffsets 38

G

GrayResponseCurve 38

GrayResponseUnit 39

Group 3 16, 28

H

HalftoneHints 75–79

high fidelity color 72

highlight & shadow place-

ment 75

HostComputer 35

I

IFD. See image file directory

II 10

image 26

image file directory 10, 12

image file header 10

ImageDescription 35

ImageLength 16, 24, 28

ImageWidth 16, 24, 28

InkNames 73

InkSet 73

J

JPEG compression 97

baseline 97

discrete cosine trans-

form 97

entropy coding 100

lossless processes 103

quantization 99

JPEGACTables 110

JPEGDCTables 109

JPEGInterchangeFormat 107

JPEGInterchangeFormatLength 108

JPEGLosslessPredictors 108

JPEGPointTransforms 109

JPEGProc 107

JPEGQTables 109

JPEGRestartInterval 108

K

no entries

L

Length of data 12

little-endian 10

LONG. See ULONG

LONG data type 13

LZW compression 57

M

Make 35

matting. See alpha data:

associated

MaxComponentValue 39

MaxSampleValue. See

MaxComponentValue

MinComponentValue 39

MinSampleValue. See

MinComponentValue

MM 10

Model 35

Modified Huffman compres-
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sion 16, 28, 43–47

multi-page TIFF files 28

multiple strips 30

N

NewSubfileType 28

O

Offset 12

Orientation 40

P

PackBits compression 42

PageName 55

PageNumber 55

palette color 21, 32

PhotometricInterpretation 15, 32, 54

pixel 26

planar format 29

PlanarConfiguration 29

Porter, Thomas 82

Predictor 66

PrimaryChromaticities 86

private tags 48

proposals

submitting 49

Q

no entries

R

RATIONAL data type 13

reduced resolution 28

ReferenceBlackWhite 88, 94

ResolutionUnit 16, 34

revision notes 6

RGB colorimetry 85

RGB images 32

row interleave 29

RowsPerStrip 17, 24, 29

S

sample. See component

SamplesPerPixel 30

SBYTE 13

separated images 69

SHORT data type 13

SLONG 13

Software 36

SRATIONAL 13

SSHORT 13

StripByteCounts 17, 24, 30

StripOffsets 17, 24, 30

StripsPerImage 29

subfile 14

SubfileType 40. See also

NewSubfileType

T

tag 12

TargetPrinter 74

Threshholding 41

TIFF

administration 48–50

Baseline 5

Class P 21–26

Class R 22–26

Classes 15–19

consulting 48

extensions 51–120

history 8

other extensions 50

sample Files 18

sample files 48

scope 8

structure 10

tags - sorted 119

TIFF Advisory Committee 49

TIFF Developer Kit 48

TileByteCounts 71

TileLength 70

TileOffsets 70

Tiles 69–71

TileWidth 70

TransferFunction 86

transparency mask 29, 33

type of a field 12

U

UNDEFINED 13

V

version number 10

W

WhiteIsZero 15, 32

WhitePoint 86

X

XPosition 55

XResolution 16, 24, 34

Y

YCbCr images 90–96

YCbCrCoefficients 92

YCbCrPositioning 93

YCbCrSubSampling 92

YPosition 55

YResolution 16, 34

Z

no entries


